
phystricks Manual
If Sage can compute it, LATEX can draw it

Laurent Claessens

June 23, 2017

Contents
1 Preparation 1

1.1 Dependencies and installation . 1
1.2 In your LATEX file . 2
1.3 Where do I find examples ? . 2
1.4 Structure of your phystricks file . 2

2 Draw points 3
2.1 Segments . 3

2.1.1 Orthogonal . 3

3 Drawing curves 4
3.1 Drawing functions . 4
3.2 Parametric curve . 4
3.3 Interpolation curve . 5
3.4 Lagrange polynomial, Hermite interpolation . 5
3.5 Compute more plotpoints (sample) . 5
3.6 Derivative, tangent, and other differential geometry . 7

4 Perspective 9

5 Figure, subfigure 11

6 Put marks on the objects 11
6.1 On angles . 11

7 How to get the LaTeX counters ? 12

8 Axes and grid 15

9 Known issues 15

1 Preparation
1.1 Dependencies and installation

1. You need a working sage installation.

2. Download phystricks from github and make it available from Sage (from phystricks import * has
to work).

3. I don’t even speak about having a working LATEX installation with Tikz installed.

1

 http://sagemath.org
 https://github.com/LaurentClaessens/phystricks

1.2 In your LATEX file
The preamble of your LATEX file has to contain

\usepackage{calc}
\usepackage{tikz}
\usetikzlibrary{patterns}
\usetikzlibrary{calc}
\newcounter{defHatch}
\newcounter{defPattern}
\setcounter{defHatch}{0}
\setcounter{defPattern}{0}

and you (don’t really) have to compile with pdflatex -shell-escape.

1.3 Where do I find examples ?
You will found (figuratively) tons of examples in the following documents :

1. In the demo document. The sources are included in the phystricks’s repository; in the subdirectory
phystricks/testing/demonstration. Browse the pdf at http://laurent.claessens-donadello.eu/
pdf/phystricks-demo.pdf.

2. In mazhe. Download the source at https://github.com/LaurentClaessens/mazhe/ and browse the pdf
at http://laurent.claessens-donadello.eu/pdf/mazhe.pdf.

3. In smath.Download the source at https://github.com/LaurentClaessens/smath/ and browse the pdf
at http://laurent.claessens-donadello.eu/pdf/smath.pdf.

Since every single functionality of phystricks is used in at least one picture of mazhe or smath, we are not
going to give so much examples in this document.

You are also invited to read the file Constructors.py; the docstring are explaining the creation of most of
the graph types.

If you need something special or if you encounter any difficulty, send me an email.

1.4 Structure of your phystricks file
Most of your phystricksfiles will have the following structure :

1 # -* - c o d i n g : utf8 -* -
2 from phystricks i m p o r t *
3 def QLXFooBDalHMaT ():
4 pspict ,fig = SinglePicture (" Q L X F o o B D a l H M a T ")
5 # p s p i c t . d i l a t a t i o n _ X (1)
6 # p s p i c t . d i l a t a t i o n _ Y (1)
7 pspict . dilatation (1)
8

9 #
10 # The i m p o r t a n t l i n e s are here
11 # D e f i n e here your o b j e c t s
12 # e x a m p l e :
13 P=Point (1 ,3)
14

15 pspict . DrawGraphs (P)
16 pspict . DrawDefaultAxes ()
17

18 #
19

20 fig. no_figure ()
21 fig. conclude ()
22 fig. write_the_file ()

We will see later the significance of these lines.

2

http://laurent.claessens-donadello.eu/pdf/phystricks-demo.pdf
http://laurent.claessens-donadello.eu/pdf/phystricks-demo.pdf
 https://github.com/LaurentClaessens/mazhe/
http://laurent.claessens-donadello.eu/pdf/mazhe.pdf
 https://github.com/LaurentClaessens/smath/
http://laurent.claessens-donadello.eu/pdf/smath.pdf

2 Draw points
Here is the code corresponding to one red point with two marks.

1 from phystricks i m p o r t *
2

3 def OnePoint ():
4 pspict ,fig = SinglePicture (" O n e P o i n t ")
5

6 P = Point (1 ,1)
7 P. parameters .color = " red "
8 P. put_mark (dist =0.2 , angle =30, text=" \(P \) " ,pspict = pspict)
9 P. put_mark (dist =0.2 , angle =-90, text=" \(Q \) " ,pspict = pspict)

10

11 pspict . DrawGraphs (P)
12

13 fig. no_figure ()
14 fig. conclude ()
15 fig. write_the_file ()

1. Compile it once in the Sage terminal :

1 sage: attach (" p h y s t r i c k s O n e P o i n t . py "); OnePoint ()
2

3 The result is on figure \ref{ LabelFigOnePoint }. % From file OnePoint
4 \ newcommand {\ CaptionFigOnePoint }{<+ Type your caption here +>}
5 \ i n p u t { Fig_OnePoint . pstricks }
6 Warning : the auxiliary file LabelFigOnePoint . phystricks .aux seems not ←↩

to exist.
7 Compile your LaTeX file .
8 This is a second (or more) mark on the same point
9 --------------- For your LaTeX file ---------------

10

11 \begin{ center }
12 \ i n p u t { Fig_OnePoint . pstricks }
13 \end{ center }
14 --
15 sage:

2. As suggested by the Sage’s output input the file Fig_OnePoint.pstricks in your LATEX document.

3. Compile your document with pdflatex <mydocument> -shell-escape

4. Re-do the compilation in Sage

5. Re-do the LATEX compilation.

If you don’t compile twice, some elements can be badly placed, especially the marks that you put on points like
the P and Q in this example.

If you want to know why, this is related to the mechanism of catching the LATEX’s internal counters(here the
size of the box) by phystricks, see section 7.

The result should be

• P
Q

2.1 Segments
2.1.1 Orthogonal

If seg is a segment from A to B. There are many cases in which you want a segment orthogonal to seg.

3

1. Let P be a point outside seg. The segment from P to its orthogonal projection on seg is

1 seg. orthogonal_through (P)

2. Let P be a point on seg. The segment from P which is orthogonal to seg is

1 seg. orthogonal_through (point=P)

If you do not provide the optional argument point, it will be the initial point of seg.

3 Drawing curves
All the curves are internally converted into parametric curve and then transformed into a large number of small
segments. Tikz will only see these segments. For that reason, we are able to draw virtually anything that Sage
can compute : we are not bound by Tikz’s internals, and even less by LATEX’s legacyembarrassingmakemecrazy
limitations.

3.1 Drawing functions
For drawing the function x 7→ x2 on [mx,Mx] the syntax is :

1 x=var(’ x ’)
2 f= phyFunction (x**2).graph(mx ,Mx)
3 pspict . DrawGraphs (f)

The function itself (what is inside the phyFunction argument) is a Sage expression, so respecting the Sage
syntax and using any function that Sage know.

In fact you can put inside phyFunction (I guess) anything that has a __call__ method, as long as it returns
real numbers.

The following is legal:

1

2 def fun(b):
3 x=var(’ x ’)
4 f=sin(x)/x
5 s= numerical_integral (f ,0.1 ,b)[0]
6 r e t u r n s
7

8 def MyPictureName ():
9 pspict ,fig = SinglePicture (" M y P i c t u r e N a m e ")

10 f= phyFunction (fun).graph (0 ,10)
11

12 pspict . DrawGraphs (f)

and draws the graph of
x 7→

∫ x

0.1

sin(t)
t

dt. (1)

3.2 Parametric curve
For the curve

γ : [a, b]→ R2

t 7→ (f1(t), f2(t))
(2)

the syntax is :

1 f1= phyFunction (...)
2 f2= phyFunction (...)
3 curve= ParametricCurve (f1 ,f2 , interval =(a,b))

4

You can omit the interval argument; in this case the interval of f1 will be used, but such implicit transfer
of property is a bad practice1.

Here is an example code :

1 # -* - c o d i n g : utf8 -* -
2 from phystricks i m p o r t *
3 def LARGooSLxQTdPC ():
4 pspict ,fig = SinglePicture (" L A R G o o S L x Q T d P C ")
5 pspict . dilatation (3)
6

7 x=var(’ x ’)
8 f1= phyFunction (sin (2*x))
9 f2= phyFunction (cos (3*x))

10 curve= ParametricCurve (f1 ,f2 , interval =(0 ,2* pi))
11

12 pspict . DrawGraphs (curve)
13 pspict . DrawDefaultAxes ()
14 pspict . comment =" T h e r e is a lack of p l o t p o i n t s , and this is n o r m a l ←↩

b e c a u s e this p i c t u r e c o m e s from the d o c u m e n t a t i o n . "
15

16 fig. conclude ()
17 fig. write_the_file ()

The result is on figure 1. You see that too few points are plotted, so that the picture is not quite well curved.
This problem can be fixed using the plotpoints attribute of the curve; we will see that later.

−1 1

−1

1

Figure 1: This is a parametric curve, a Lyssajou.

3.3 Interpolation curve
<++>

3.4 Lagrange polynomial, Hermite interpolation
<++>

3.5 Compute more plotpoints (sample)
As seen on figure 1, the default setting does not compute enough «intermediate» points to produce a visually
correct result on some curves.

The easiest way to make the curve more smooth is to increase the plotpoints attribute; as an example :
1phystricks contains lots of such “if an argument is missing I will search it somewhere” mechanisms.

5

1 f= phyFunction (sin(x)/x).graph (0.01 ,5)
2 f. parameters . plotpoints =500

For fixing the ideas, let’s say plotpoints=100. Then the default behaviour is to consider 100 values of
the parameters that regularly spaced between its minimum and its maximum. The drawn curve is then the
interpolation curve of the corresponding points.

This is not always adapted, and we have two ways to adapt this mechanism to particular cases.

Add selected plot points We can make compute some more points by adding parameters values to the list
added_plotpoints :

1 curve= ParametricCurve (f1 ,f2 , interval =(0 ,1))
2 curve. parameters . added_plotpoints =[0.001 , pi/5]

In this case we will compute 102 points : the usual 100 plus the ones corresponding to the values 0.001
and π/5 of the parameters.

Force smoothing We can do

1 curve= ParametricCurve (f1 ,f2 , interval =(0 ,1))
2 curve. parameters . force_smooth =True

In this case, the 100 interpolation points will be taken regularly spaced with respect to the integral of the
curvature. In other words {xi}i=1,...,50 are chosen in such a way that∫ xi+1

xi

c(t)dt (3)

is constant with respect to to i.

An example :

1 # -* - c o d i n g : utf8 -* -
2 from phystricks i m p o r t *
3 def PBFCooVlPiRBpt ():
4 pspict ,fig = SinglePicture (" P B F C o o V l P i R B p t ")
5 pspict . dilatation (3)
6

7 x=var(’ x ’)
8 f1= phyFunction (sin (2*x))
9 f2= phyFunction (cos (3*x))

10 curve= ParametricCurve (f1 ,f2 , interval =(0 ,2* pi))
11

12 curve. parameters . force_smoothing =True
13

14 pspict . DrawGraphs (curve)
15 pspict . DrawDefaultAxes ()
16 pspict . comment =" T h e r e is a lack of p l o t p o i n t s , and this is n o r m a l ←↩

b e c a u s e this p i c t u r e c o m e s from the d o c u m e n t a t i o n . "
17

18 fig. no_figure ()
19 fig. conclude ()
20 fig. write_the_file ()

.

6

−1 1

−1

1

Is it better that figure 1 ? The four angles are for sure smoother. However, the computation of these points at
“regular curvature” interval can take forever and it is often much faster to simply add thousands of plotpoints.

3.6 Derivative, tangent, and other differential geometry
A phyFunctionGraph object has a method derivative that returns a phyFunction of the derivative.

Here is an example code :

1 from phystricks i m p o r t *
2 def FunctionThird ():
3 pspict ,fig = SinglePicture (" F u n c t i o n T h i r d ")
4 pspict . dilatation (0.7)
5

6 var(’ x ’)
7 f = phyFunction (x*cos(x))
8 mx = -5
9 Mx = 5

10 F = f.graph(mx ,Mx)
11 G = f. derivative ().graph(mx ,Mx)
12 G. parameters .color = " red "
13 pspict . DrawGraphs (F,G)
14

15 pspict . DrawDefaultAxes ()
16 pspict . comment =" The f u n c t i o n \(x \ cos (x) \) (blue) and its d e r i v a t i v e (←↩

red) . "
17

18 fig. no_figure ()
19 fig. conclude ()
20 fig. write_the_file ()

7

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

You also have methods to get the tangent and normal vector.

1 # -* - c o d i n g : utf8 -* -
2

3 # This is the e x a m p l e you also have in the R E A D M E . md
4

5 from phystricks i m p o r t *
6 def VSJOooJXAwbVEt ():
7 pspict ,fig = SinglePicture (" V S J O o o J X A w b V E t ")
8 pspict . dilatation (1)
9

10 O=Point (0 ,0)
11

12 # center , r a d i u s
13 circle = Circle (O,2)
14

15 # P o i n t s are p a r a m e t r i z e d by t h e i r a n g l e (d e g r e e)
16 A= circle . get_point (130)
17 B= circle . get_point (220)
18 tg= circle . get_tangent_vector (30)
19

20 # dist : the d i s t a n c e b e t w e e n the c i r c l e and the mark .
21 # text : the L a T e X code that will be p l a c e d t h e r e .
22 A. put_mark (dist =0.3 , text=" $ \ lim_ { s }(F \ circ \ g a m m a ’) $ " ,pspict = pspict)
23 B. put_mark (dist =0.3 , text=" K " ,pspict = pspict)
24

25 pspict . DrawGraphs (circle ,A,tg ,B)
26

27 fig. no_figure ()
28 fig. conclude ()
29 fig. write_the_file ()

•
lims(F ◦ γ′)

•
K

8

You can grab a list of points regularly spaced on a curve with respect to the arc length.

1 # -* - c o d i n g : utf8 -* -
2 from phystricks i m p o r t *
3 def GKMEooBcNxcWBt ():
4 pspict ,fig = SinglePicture (" G K M E o o B c N x c W B t ")
5 var(’ x ’)
6 f1 = phyFunction (x*sin(x))
7 f3 = phyFunction (x*cos(x))
8

9 llI = 0
10 llF = 5
11 F2 = ParametricCurve (f1 ,f3 , interval =(llI ,llF))
12

13 for ll in F2. getRegularLengthParameters (llI ,llF ,2):
14 v1 = F2. get_tangent_vector (ll)
15 v2 = F2. get_normal_vector (ll)
16 pspict . DrawGraphs (v1 ,v2)
17

18 pspict . DrawGraphs (F2)
19 pspict . DrawDefaultAxes ()
20

21 fig. no_figure ()
22 fig. conclude ()
23 fig. write_the_file ()

−6 −5 −4 −3 −2 −1 1 2

−4

−3

−2

−1

1

By the way you should note the method getRegularLengthParameters that return a list of parameters
value such that the corresponding points are regularly spaced on the curve (with respect to the arc length).
Namely

1 F2. getRegularLengthParameters (llI ,llF ,2):

returns a list of parameters such that the arc length between two points is 2.

4 Perspective
You can make your cube opaque (non-transparent) with the method make_opaque.

Exemple 1

1 # -* - c o d i n g : utf8 -* -

9

2 from phystricks i m p o r t *
3 def IllusionNHwEtp ():
4 pspict ,fig = SinglePicture (" I l l u s i o n N H w E t p ")
5 pspict . dilatation (0.7)
6

7 perspective = ObliqueProjection (45, sqrt (2) /2)
8

9 l=2
10 P=(0 ,0)
11 cubesP =[]
12 cubesL =[]
13 cubesH =[]
14 profondeur =7
15 longueur =4
16 hauteur =4
17 for i in r a n g e (0, profondeur):
18 cubesP . append (perspective . cuboid (P,l,l,l))
19 Q= cubesP [-1]. c2 [3]
20 P=(Q.x,Q.y)
21 P=(0 ,0)
22 for i in r a n g e (0, longueur):
23 cubesL . append (perspective . cuboid (P,l,l,l))
24 Q= cubesL [-1]. c1 [2]
25 P=(Q.x,Q.y)
26 for i in r a n g e (0, hauteur):
27 cubesH . append (perspective . cuboid (P,l,l,l))
28 Q= cubesH [-1]. c1 [0]
29 P=(Q.x,Q.y)
30 cubesP . reverse () # A i n s i les plus é l o i g n é s sont t r a c é s en p r e m i e r .
31 for i,cub in e n u m e r a t e (cubesP):
32 cub. make_opaque ()
33 pspict . DrawGraphs (cub)
34 for i,cub in e n u m e r a t e (cubesL):
35 cub. make_opaque ()
36 pspict . DrawGraphs (cub)
37 for i,cub in e n u m e r a t e (cubesH):
38 cub. make_opaque ()
39 pspict . DrawGraphs (cub)
40

41 fig. no_figure ()
42 fig. conclude ()
43 fig. write_the_file ()

10

4

5 Figure, subfigure
1. The caption of the figure is not given in the phystricks code, but has to be inserted in the LaTeX

document.

2. On the contrary, the subfigures caption are from the phystricks code

You should use the utility new_picture.py to generate the skeleton of your figure.

6 Put marks on the objects
One can always put a mark on an object; the position is by default automatically determined. The general
statement is :

1 obj. put_mark (dist ,angle ,text , mark_point =None , added_angle =None , pspict =←↩
None , position =" ")

6.1 On angles
You can add a mark inside an angle. The positioning is automatic, and needs two passes.

Exemple 2

1 # -* - c o d i n g : utf8 -* -
2 from phystricks i m p o r t *
3 def FBTCooBKTryQ ():
4 pspict ,fig = SinglePicture (" F B T C o o B K T r y Q ")
5 pspict . dilatation_X (1)
6 pspict . dilatation_Y (1)
7

8 O=Point (0 ,0)
9 A=O+(2 ,1)

10 C=O+(-2,-1)
11

12 s1= Segment (C,A). dilatation (1.5)
13 P=O+(3 , -1)
14 s2= Segment (O,P)
15

16 a1= AngleAOB (P,O,A)
17 a2= AngleAOB (C,O,P,r=0.3)
18

19 a1. put_mark (text=" \(24\) " ,pspict = pspict)
20 a2. put_mark (text=" \(130 \) " ,pspict = pspict)
21

22 no_symbol (A,O,C)
23

24 pspict . DrawGraphs (s1 ,s2 ,a1 ,a2 ,A,O,C)
25 fig. no_figure ()
26 fig. conclude ()
27 fig. write_the_file ()

Picture : FBTCooBKTryQ

11

24
130

4

7 How to get the LaTeX counters ?
We are going to explain one important mechanism in phystricks about its interaction with LATEX. For we
consider the code

1 from phystricks i m p o r t *
2

3 def OnePoint ():
4 pspict ,fig = SinglePicture (" O n e P o i n t ")
5

6 P = Point (1 ,1)
7 P. parameters .color = " red "
8 P. put_mark (dist =0.2 , angle =30, text=" \(P \) " ,pspict = pspict)
9 P. put_mark (dist =0.2 , angle =-90, text=" \(Q \) " ,pspict = pspict)

10

11 pspict . DrawGraphs (P)
12

13 fig. no_figure ()
14 fig. conclude ()
15 fig. write_the_file ()

We compile it in a Sage terminal :

1 sage: attach (" p h y s t r i c k s O n e P o i n t . py "); OnePoint ()
2

3 The result is on figure \ref{ LabelFigOnePoint }. % From file OnePoint
4 \ newcommand {\ CaptionFigOnePoint }{<+ Type your caption here +>}
5 \ i n p u t { Fig_OnePoint . pstricks }
6 Warning : the auxiliary file LabelFigOnePoint . phystricks .aux seems not to ←↩

exist.
7 Compile your LaTeX file .
8 This is a second (or more) mark on the same point
9 --------------- For your LaTeX file ---------------

10

11 \begin{ center }
12 \ i n p u t { Fig_OnePoint . pstricks }
13 \end{ center }
14 --
15 sage:

If you input now the file Fig_OnePoint.pstricks in your LATEX document, you’ll see a beautiful red point
with two marks, a P and a Q.

• P
Q

However, the marks are badly placed, this is the sense of the warning about the existence of the file
LabelFigOnePoint.phystricks.aux. In fact the file Fig_OnePoint.pstricks does not only contains the

12

tikz code for the picture, but also a pure LATEX code asking latex to write the dimensions of the boxes P and
Q in an auxiliary file.

Just in order to make is cryptic, these are lines like :

\makeatletter\@ifundefined{writeOfphystricks}{\newwrite{\writeOfphystricks}}{}\makeatother%
\setlength{\lengthOfhomemokyDOTSagesrcbinsageipython}{\totalheightof{\(P\)}}%
\immediate\write\writeOfphystricks{totalheightof1903839d9021e180dd790c4cc63081c63b2fe6f1:\the\lengthOfhomemokyDOTSagesrcbinsageipython-}

Now you can reenter Sage and recompile the picture :

1

2 sage: attach (" p h y s t r i c k s O n e P o i n t . py "); OnePoint ()
3

4 The result is on figure \ref{ LabelFigOnePoint }. % From file OnePoint
5 \ newcommand {\ CaptionFigOnePoint }{<+ Type your caption here +>}
6 \ i n p u t { Fig_OnePoint . pstricks }
7 This is a second (or more) mark on the same point
8 --------------- For your LaTeX file ---------------
9

10 \begin{ center }
11 \ i n p u t { Fig_OnePoint . pstricks }
12 \end{ center }
13 ---

The warning disappeared and now phystricks has read the auxiliary file containing the dimensions of the
boxes. The P and Q are then now placed taking their real dimension into account.

The auxiliary file contains the lines

totalheightof1903839d9021e180dd790c4cc63081c63b2fe6f1:6.83331pt-
widthof1903839d9021e180dd790c4cc63081c63b2fe6f1:7.80904pt-
totalheightof15a6448f2b408bb6a0dabb437cc671b7beb909fc:8.77776pt-
widthof15a6448f2b408bb6a0dabb437cc671b7beb909fc:7.90555pt-

The box is identified by a hash of its LATEX code. The reason is that almost(?) any string can be valid LATEX
code2, so the parsing of this auxiliary file is more or less impossible if the actual LATEX code is included.

Relaunch pdfLATEX and you’ll see the points correctly placed.
Conclusion : when you add some LATEX code in your picture, you need one more pass of pdfLATEXand

phystricks in order to get the marks right.
This mechanism of making LATEX write values in an auxiliary file is general and any latex internal counters

can be accessed in your python code (as Python’s float).
You don’t believe ? Here is a picture with the following specifications :

1. The line slope is the number of the section (here we have 7=7).

2. The line is drawn from x = 0 to x = xmax computed in such a way that ymax = 5.

3. A dilatation in the x-direction is computed in such a way that the picture has 10 cm length.

4. The page number is written just on the top of coordinates (xmax, ymax).

Here is a newpage for reasons that will be explained right on the next page.

2Thanks to the catcode mechanism, it seems to me that latex is the most introspective programming language ever.

13

Obviously this kind of picture has to be recompiled each time we change the containing document, and it
can be wrong if the picture happens to be on the top of a page; in this case, LATEX sees the request for writing
the page number on the bottom of the previous page.

Exemple 3

14.0

1

1

2

3

4

5

1 # -* - c o d i n g : utf8 -* -
2

3 from __future__ i m p o r t division
4 from phystricks i m p o r t *
5

6 def RJDEoobOibtkfv ():
7 pspict ,fig = SinglePicture (" R J D E o o b O i b t k f v ")
8

9 # T a k i n g the v a l u e of the L a T e X ’ s c o u n t e r s " s e c t i o n " and " page "
10 section = pspict . auxiliary_file . get_counter_value (" s e c t i o n " ,default_value←↩

=1)
11 page= pspict . auxiliary_file . get_counter_value (" page ")
12

13 # You c o m p u t e with it as n o r m a l P y t h o n f l o a t
14 xmax =5/ section
15 pspict . dilatation_X (10/ xmax)
16

17 # C r e a t e the p i c t u r e i t s e l f u s i n g the c o m p u t e d n u m b e r s :
18 x=var(’ x ’)
19 f= phyFunction (section *x).graph (0, xmax)
20 f. put_mark (0.2 , angle=None , added_angle =0, text=" \({} \) ". f o r m a t (page),←↩

pspict = pspict)
21

22

23 pspict . DrawGraphs (f)
24 pspict . DrawDefaultGrid ()
25 pspict . DrawDefaultAxes ()
26 pspict . comment =r """
27 \ b e g i n { e n u m e r a t e }
28 \ item
29 s l o p e of the line is e q u a l to the s e c t i o n n u m b e r
30 \ item
31 the page n u m b e r is w r i t t e n .
32 \ item
33 the X d i l a t a t i o n m a k e s the real p i c t u r e m e a s u r e 10 cm
34 \ end { e n u m e r a t e }
35 """
36 fig. no_figure ()

14

37 fig. conclude ()
38 fig. write_the_file ()

4

The default value for the section counter is given to avoid division by zero, because zero is the default-
default value : the one which is returned at first compilation, when the auxiliary file does not yet contain the
value of the counter (there is a bootstrap here).

8 Axes and grid
Adding axes and grid is as simple as

1 pspict . DrawDefaultGrid ()
2 pspict . DrawDefaultAxes ()

Since the grid has to adapt itself to the drawn objects and the axes have to adapt to the grid :

• You have to put these lines after any other pspict.DrawGraphs invocation. If not, the result is unpre-
dictable, but is often an error due to a too large bounding box.

• You have to invoke the grid before the axes.

9 Known issues
There are some known issues.

1. When performing a dilatation (especially with different x and y factors), some objects do not behave
correctly. This is the case of the marks on polygon and the coding of a drawing (small bars in order to
indicate that two lines have same length).

2. Rotating a whole picture is very poorly tested.

3. The following pictures in smath are incorrect : JSYR, ZBHL, KYVA, DYJN. Probably due to a bad managing
of the dilatation.

15

 http://laurent.claessens-donadello.eu/smath.pdf

	Preparation
	Dependencies and installation
	In your LaTeX file
	Where do I find examples ?
	Structure of your phystricks file

	Draw points
	Segments
	Orthogonal

	Drawing curves
	Drawing functions
	Parametric curve
	Interpolation curve
	Lagrange polynomial, Hermite interpolation
	Compute more plotpoints (sample)
	Derivative, tangent, and other differential geometry

	Perspective
	Figure, subfigure
	Put marks on the objects
	On angles

	How to get the LaTeX counters ?
	Axes and grid
	Known issues

