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Introduction

The question arises when one watches movies such as Star Trek: what is a black
hole ? One knows from special relativity that light speed cannot be exceeded.
So, as a first attempt to define the notion of black hole, we just say that it is a
region of the space from which even light cannot escape. Such an object causes
a scientific problem because it is by assumption not observable. This fact allows
science-fiction writers to invent anything without any chance of contradiction.
That is a Star Trek black hole.

Physical black holes are much more interesting because they are the signal
of a general relativity failure.

The Newtonian gravitational field is given by a potential which increases
as 1{r when you get closer to a massive object. At r � 0, this potential makes
no sense and physics is in trouble. One can avoid the problem by postulating
that there exist no pointwise masses and that particles cannot penetrate each
other. From these assumptions, the fact that Newtonian mechanics does not
impose any limit speed makes the divergence at r � 0 unimportant.

In general relativity, the divergence at small distances is much more prob-
lematic because there is a limit speed; hence a pointwise mass always creates
a whole region from which nothing (not even light) can escape. Worse: even a
homogeneous ball produces a divergence in the metric when it is too dense, and
such objects may exist in the real world. Stated in a more mathematical way:
solutions of Einstein’s equations for the real world may be singular. From this
point of view, black holes are nothing else than a feature in the mathematical
framework of relativity which indicates that this is not a final theory. That is
the notion of black hole in general relativity and in cosmology.

The transfer of concept from physics to mathematics always consists in
taking the key features of the mathematical framework of a physical theory
and posing them as definition of a new mathematical object. What are the
main mathematical points in the concept of black hole in general relativity ?
First, we retain the notion of pseudo-Riemannian manifold. The sign of the
norm of a vector is the crucial property which allows one to define causality
(the light cone).

The second main feature that we extract from the physical situation is the
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fact that a general relativity black hole has a non empty interior. We saw
that this is the key difference between the Newtonian case in which all points
are equivalent except the unique point where the mass lies, and the general
relativistic case in which a whole region was causally disconnected from the
rest of the space.

More precisely, as mathematicians, we ask a black hole to separate the
pseudo-Riemannian manifold into two causally disconnected parts in the sense
that no light-like geodesics can reach the second region from the first one.
Notice that we do not include metric singularity in our mathematical black hole
notion. In cosmology, in contrast, black holes always take root in a divergence
of some metric invariant such as the curvature.

The anti de Sitter space is a solution of Einstein’s equations with constant
negative curvature. We consider this space as our framework. First, we define
as singular the closed orbits of the action of some subgroup of the isometry
group SOp2, nq of anti de Sitter. This is done in such a way to generalize
to any dimensions the celebrated BTZ black hole. Then we prove that the
resulting structure is a black hole in the sense that it cuts the space into two
parts : an interior region from which every light-like geodesic intersects the
singularity and an exterior region in which every point accepts at least one
light-like geodesics which does not intersect the singularity. Notice that our
black hole does not present any curvature singularity.

The second theme of this thesis is deformation quantization. The key ingre-
dient of quantum mechanics is the noncommutativity of quantum observables.
When one tries to measure the velocity and the position of a classical particle
(such as a tennis ball or a planet), one can choose the order of measurement.
It does not matter which of velocity or position is measured first. Quantum
mechanics (the mechanics which governs subatomic particles) is very different.
If you measure the position of an electron and then you measure its velocity,
you do not get the same result as if you had measured the velocity first and
then the position. That noncommutativity in measurements is the very foun-
dation of the quantum mechanics. In the usual mathematical framework, it
is implemented by describing each measurable quantity by an operator acting
on a Hilbert space. The eigenvalues of these operators correspond to physical
measurements. The position and momentum operators for example are respec-
tively fpxq ÞÑ xfpxq and fpxq ÞÑ �i~pBxfqpxq. These two operators obviously
do not commute.

In a more abstract way, we say that noncommutativity of quantum mechan-
ics is implemented by considering some noncommutative algebra of operators
acting on a Hilbert space, while the classical mechanics deals with observables
that are usual functions that form a commutative algebra. The procedure to
pass from commutative function algebras to noncommutative operator algebras
is the so-called quantization in physics.



In our sense5, deforming a manifold is simply putting a one-parameter fam-
ily of new noncommutative products on the set of functions on this manifold.
We impose that it reduces to the usual commutative product when the pa-
rameter goes to zero. In order to speak of quantization, we ask the first order
term in the expansion with respect to the parameter to somehow “contain” the
symplectic structure given on the original manifold.

Questions that arise in this context are: is it possible to study causality in
a noncommutative framework ? does it apply to real physics ?

The main result of the present work is not to directly address these large
questions, but to build a concrete example in which one can work. Namely, we
consider the anti de Sitter space — that is the simplest non trivial solution of
Einstein’s equations with constant negative curvature — that we endow with
a black hole structure defined from the action of a subgroup of the isometry
group. Then we select the physical part of the space — the one which is causally
connected to infinity — and we perform a deformation of that part.

The work is divided into three main parts. In a first time (chapter 1) we
define a “BTZ” black hole in anti de Sitter space in any dimension. That will
be done by means of group theoretical and symmetric spaces considerations.
A physical “good domain” is identified as an open orbit of a subgroup of the
isometry group of anti de Sitter.

Then (chapter 2) we show that the open orbit is in fact isomorphic to a
group (we introduce the notion of globally group type manifold) for which a
quantization exists. The quantization of the black hole is performed and its
Dirac operator is computed.

The third part (appendix A and B) exposes some previously known results.
Appendix A is given in a pedagogical purpose: it exposes generalities about de-
formation quantization and careful examples with SLp2,Rq and split extensions
of Heisenberg algebras. Appendix B is devoted to some classical results about
homogeneous spaces and Iwasawa decompositions. Explicit decompositions are
given for every algebra that will be used in the thesis. It serves to make the
whole text more self contained and to fix notations. Basics of quantization by
group action are given in appendix A.4.

One more chapter is inserted (chapter 3). It contains two small results
which have no true interest by themselves but which raise questions and call
for further development. We discuss a product on the half-plane (or, equiv-
alently, on the Iwasawa subgroup of SLp2,Rq) due to A. Unterberger. We
show that the quantization by group action machinery can be applied to this
product in order to deform the dual of the Lie algebra of that Iwasawa sub-
group. Although this result seems promising, we show by two examples that
the product is not universal in the sense that even the product of compactly

5Quantization is a very large field of mathematics; as far I know, the idea of noncommu-
tativity is always present, but precise notion of “to quantize something” may vary from one
subject to another
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supported functions cannot be defined on AdS2 by the quantization induced
by Unterberger’s product.

Then we show that the Iwasawa subgroup of SOp2, nq (i.e. the group which
defines the singularity) is a symplectic split extension of the Iwasawa subgroup
of SUp1, 1q by the Iwasawa subgroup of SUp1, nq. A quantization of the two
latter groups being known, a quantization of SOp2, nq is in principle possible
using an extension lemma (subsection A.3). Properties of this product and the
resulting quantization of AdSl were not investigated because we found a more
economical way to quantize AdS4.



Chapter 1

Black holes in anti de Sitter

spaces

Abstract

This chapter deals with black holes in anti de Sitter spaces. The
latter are the simplest non flat solutions to Einstein’s equations with
constant negative cosmological constant; they are in particular pseudo-
Riemannian manifolds that carry a causal structure, physically due to the
finiteness of speed of light. That physical restriction is mathematically
encoded by the existence of three types of geodesics: the space-, time- and
light-like ones, existence which is in turn implied by the non positivity
of the metric. A causal structure is introduced by defining two points as
causally connected when there exists a time- or light-like path connecting
them.

The originality of our approach is that the l-dimensional space AdSl
is seen as a quotient of groups SOp2, l�1q{ SOp1, l�1q � G{H , and that
the special causal black hole structure is described in terms of orbits of
the action of a subgroup of the isometry group of the manifold.

Using symmetric spaces techniques, we show that closed orbits of the
Iwasawa subgroup of SOp2, l � 1q naturally define a causal black hole
singularity in anti de Sitter spaces in l ¥ 3 dimensions. In particular,
we recover for l � 3 the non-rotating massive BTZ black hole. The
method presented here is very simple and in principle generalizable to
any semisimple symmetric space.

13



14 CHAPTER 1. BLACK HOLES IN ANTI DE SITTER SPACES

1.1 Introduction

1.1.1 General ideas of a black hole

The basic notions needed in order to define a causal structure on a time ori-
entable pseudo-Riemannian manifold are that of time-, light- and space-like
tangent vector. A tangent vector is said to be respectively time-, space- or
light-like when its norm is positive, negative or null; physically, only time-like
vectors are allowed to be the velocity of an observer (this is the fact that light
speed cannot be attained by a massive particle), and it is only possible for
massless particle (such as photons) to follow trajectories with light-like tangent
vectors.

From a geometric point of view, a black hole is the data of a causal manifold
M together with a subset S � M called singularity such that the whole
manifold is divided into two parts: the interior and the exterior of the black
hole. A point is said to be interior if all future light-like geodesics through the
point have a non empty intersection with the singularity. A point is exterior if
it is not interior. An important subset of the space is the event horizon: the
boundary between these two subsets.

1.1.2 BTZ black hole

The BTZ black hole introduced and developed by Bañados, Teitelbaum, Zan-
nelli and Henneaux in [4, 5] is an example of a black hole whose singularity is
not motivated by metric divergences1. The construction is roughly as follows.
We consider the anti de Sitter space in which we pick up a Killing vector field
whose sign of norm is not constant. Then we perform a discrete quotient along
the integral curves of this vector field. Of course we obtain a lot of closed
geodesics. The point is that, in the region where the Killing vector field is
space-like, these closed curves are space-like. That violates the physical prin-
ciple of causality. For that reason, we decree that this region is singular or,
equivalently, that the boundary of this region is singular. The BTZ singularity
is then the loci where the chosen Killing vector field has a vanishing norm. Since
discrete quotients do not affect local structures, the resulting space remains a
solution of the p2�1q-dimensional general relativity with negative cosmological
constant2. In this context one can define pertinent notions of mass and angular
momentum which depend on the chosen Killing vector field.

1It turns out that general relativity accepts a lot of solutions presenting metric divergences;
or more precisely, there are a lot of physical situations from which Einstein’s equations lead
to divergences of some metric invariant such as the curvature.

2For honesty, we have to warn the reader that the real world’s cosmological constant has
been measured very small but positive. We also have to point out that the four dimensional
anti de Sitter space is a solution of general relativity without masses. From a physical point
of view, this thesis has to be seen as a toy model.
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In the case of the non-rotating massive BTZ black hole, the structure of
the singularity and the horizon are closely related to the action of a minimal
parabolic (Iwasawa) subgroup of the isometry group of anti de Sitter, see [12,
16]. The whole work on the BTZ black hole and the fact that it belongs to the
class of causal symmetric spaces (for definitions and some examples, see [21])
motivate the following definition:

Definition 1.1.
A causal solvable symmetric black hole is a causal symmetric space where
the closed orbits of minimal parabolic subgroups of its isometry group define a
black hole singularity. See section 1.2 for definitions of causality and singular-
ity.

1.1.3 Generalization and group setting

The original BTZ black hole was constructed in dimension three, but we will
see in this chapter that, exploiting their group theoretical description, they can
easily be generalized to any dimension, as pointed out in [14, 18]. Notice that
higher-dimensional generalizations of the BTZ construction have been studied
in the physics literature, by classifying the one-parameter isometry subgroups
of IsopAdSlq � SOp2, l � 1q, see [2, 3, 6, 22, 26, 32], but these approaches do
not exploit the symmetric space structure of anti de Sitter.

The structure that will be described with full details in next pages may be
summarized as follows. Take G � SOp2, l� 1q, fix a Cartan involution θ and a
θ-commuting involutive automorphism σ of G such that the subgroup H of G of
the elements fixed by σ is locally isomorphic to SOp1, l�1q. The quotient space
M � G{H is a l-dimensional Lorentzian symmetric space, the anti de Sitter

space-time. We denote by G and H the Lie algebras of G and H . We have the
decomposition G � H`Q into the�1-eigenspace of the differential at e of σ that
we denote again by σ. We also consider G � K`P , the Cartan decomposition
induced by θ; and A, a σ-stable maximally abelian subalgebra of P . A positive
system of roots is chosen and let N be the corresponding nilpotent subalgebra
(see Iwasawa decomposition, theorem B.9). Set N � θpN q, R � A `N and
R � A ` N . Finally denote by R � AN and R � AN the corresponding
analytic subgroups of G. One then has

Theorem 1.2.
The l-dimensional anti de Sitter space with l ¥ 3, seen as the symmetric space
SOp2, l � 1q{ SOp1, l � 1q, becomes a causal solvable symmetric black hole, as
defined above, when the closed orbits of the Iwasawa subgroup R of SOp2, l� 1q
and its Cartan conjugated R are said to be singular. There exists in particular
a non empty event horizon. There are finitely many such closed orbits.

This chapter intends to prove this theorem, and for the sake of completeness,
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we also analyze in some detail in section 1.5 the two-dimensional case, for which
the construction does not yield a black hole structure.

The black hole causal structure is thus completely determined by the action
of a solvable group. This observation gives prominence to potential embeddings
of these spaces in the framework of noncommutative geometry, in defining
noncommutative causal black holes (see also [14]) through the existence of
universal deformation formulae for solvable groups actions which have been
obtained in the context of WKB-quantization of symplectic symmetric spaces
[7, 10]. These issues are investigated in chapter 2 and in [17].

1.2 Causality, light cone and related topics

1.2.1 Causality in anti de Sitter spaces

We consider the l-dimensional anti de Sitter space (see appendix B.9)

AdSl � SOp2, l� 1q
SOp1, l� 1q p� u2 � t2 � x2

1 � � � � � x2
l�1 � 1q. (1.1)

According to proposition B.3, we can only consider the identity component of
SOp2, l � 1q and SOp1, l � 1q instead of full groups. The metric that we put
on AdSl is the one induced from the Killing form of SOp2, l � 1q by formula
(B.17). This metric has a Minkowskian signature, so that we have natural
notions of time-, space- and light-like vectors. From now we denote by G and
H the groups SOp2, l � 1q and SOp1, l � 1q.

The connected group SO0p2, l�1q admits an Iwasawa decomposition ANK
(see theorem B.9). Let AN̄ be the θ-conjugate3group of AN where θ is the
Cartan involution of subsection B.7.1. We will see that the actions of AN and
AN̄ have closed and open orbits. The closed ones are denoted by SAN and
SAN̄ . The following definition is motivated all previously existing work about
BTZ black hole.

Definition 1.3.
The singularity in AdSl is the set

S � singularity � SAN YSAN̄ ,

so that a point is singular when it belongs to a closed orbit of AN or AN̄ .
The black hole is defined as

BH � tx P AdSl st � time-like vector k P TxAdSl, lkx X S � Hu
where lkx is the (future directed) geodesic in the direction k starting at x (see
equation (1.9) and the discussion above).

3Roughly speaking, it corresponds to different choices in the Iwasawa decomposition of
SOp2, l � 1q.
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The aim of this chapter is to prove that the so-defined black hole is non
trivial in the sense that the following inclusions are strict:

S � BH � AdSl. (1.2)

In order to get a full definition of the black hole and its structure, we need
to define and characterise the notions of light ray and light cone. These notions
are of course directly issued from physics of relativity.

Definition 1.4.
A light ray is a geodesic whose tangent vector is everywhere light-like.

Remark 1.5. The causal structure of a general pseudo-Riemannian manifold
is the fact that two points are said to be causally connected when there exists
a light ray which passes by both points.

A light ray trough ϑ is given by a vector of Q with vanishing norm. So let
us study these vectors. Let E1 � q0 � q1 and k, a general element of SOpnq
which reads k � eK with K � aijpEij � Ejiq, i, j ¥ 3 and aij � �aji. If we
pose Aj � E1j�Ej1, we have rK,E1s � p2aqj3Aj and rK,Aks � ajkAj . Hence,

adpKqnE1 � �p2aqn�k3
Ak,

and

AdpkqE1 � eadKE1 � E1 �
ņ¥1

�p2aqn�k3
Ak� E1 � 8̧

n�0

�p2aqn�k3
Ak � δj3Aj� E1 �E31 �E13 � �
e2a

�j3
Aj� q0 � l�1̧

j�1

wjqj

(1.3)

where wi � �
e2a

�i3
. Under an explicit form, we have

AdpkqE1 � ������� 0 1 w1 w2 . . .�1

w1

w2

...

�ÆÆÆÆÆ
 (1.4)

The exponential e2a being an element of SOpnq, the parameterswi are restricted
by the condition

°
k wk � 1. Remark moreover that every matrix of SOp2q can
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be written under the form e2a for a good choice of a P sop2q. The light cone
is therefore given by the set of vectors of the form p1, wiq with }w}2 � 1. If
we consider the metric diagp��� � � � q on Q with respect to the basis tqiu, we
have }AdpkqE1}2 � 0.

This is coherent with the intuitive notion of light cone. It is on the one hand
also true that every light-like vector of Q reads AdpkqE1 for some k P SOpnq.
On the other hand every nilpotent element of Q is light-like because trace of
nilpotent matrix is zero (using Engel’s theorem). In definitive, we proved the
following:

Proposition 1.6.
When E is any nilpotent element of Q, the set of light-like vectors of Q is
parametrized by λAdpkqE with k P SOpnq and λ P R.

Let us point out the fact that only the first column of the “direction” k P
SOpnq has an importance in causality issues. So the word “directions” will
often be used to refer to the vector w. It is not a particular feature of our
particular matrix representation choie. Indeed the element k only appears
in the combination AdpkqE which is a light-like vector in Q, i.e. AdpkqE �
tq10 �°

i xiq
1
i with t2 �°

i x
2
i � 0 for any orthonormal basis tq1iu of Q. As far

as causality is concerned, a rescaling AdpkqE to λAdpkqE has no importance,
so one can choice t � 1 and find back

°
i x

2
i � 1. We see that it is a natural

feature that the light-like rays are parametrized by unital vectors of Rn.

Lemma 1.7.
Let E be a nilpotent element in Q, and π : GÑ G{H, the canonical projection.
A light ray through rgs P AdSl has the form

lkrgsptq � π
�
ge�tAdpkqE� (1.5)

for a certain k P KH � K XH � SOpnq.
Proof. General theory of symmetric spaces (see [34], pages 230–233, particu-
larly theorem 3.2) proves that a light ray through ϑ � res has the form

sptq � π
�
etX

�
.

In our context, we have the additional request for the tangent vector to be
light-like. Proposition 1.6 thus imposes X to be of the form AdpkqE. That
proves the claim for geodesics trough ϑ.

The fact that dτg is an nondegenerate isometry then extends the result to
all points.
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Corollary 1.8.
If E is nilpotent in Q, then tAdpkqEukPKH is the set of light-like vectors in
TrϑsAdSl � Q. Therefore

expϑptAdpkqEq � expptAdpkqEq � ϑ. (1.6)

is the light cone of ϑ in AdSl.

In order to fix ideas, we will always use the element E1 as choice of nilpotent
element in Q in order to parametrize light-cone. Since SOp2, l�1q acts on AdSl
by isometries, the light cone at πpgq is given by a translation of the one at ϑ:

C�
πpgq � g � Cϑ � tπ�getAdpkqE1

�u tPR�
kPKH . (1.7)

The product being taken at left while the quotient being taken at right, one can
fear a problem of well definiteness in this expression. The following proposition
shows that all is right.

Proposition 1.9.
Definition (1.7) is independent of the representative g in the class πpgq. In
other words, tAdphkqE1ukPKH � tAdpkqE1ukPKH (1.8)

for all h P H.

Proof. The metric on Q is the restriction of the Killing form of G (notice that
Q has no own Killing form for the simple reason that it is not a Lie algebra).
From Ad-invariance, we have in particular

B
�

AdphqX,AdphqY � � BpX,Y q
for all h P SOp1, l � 1q. The point is that reducibility makes AdphqX P Q
when X P Q. The element AdphkqE1 in the left hand side of equation (1.8)
being zero-normed in Q, it reads Adpk1qE1 for some k1 P KH . That proves the
inclusion in one sense. For the second inclusion, we have to find a k1 P KH

such that Adphk1qE1 � AdpkqE1. Existence of such a k1 follows from the fact
that Adph�1kqE1 is a light-like vector of Q.

1.2.2 Time orientation

A time orientation on Q is the choice of a vector T such that xT |T y ¡ 0.
When such a choice is made, a vector v is future directed when xv|T y ¡ 0.
In our case, the choice is the intuitive one: the vector q0 defines the time
orientation on Q and v � pv0, v1, v2, v3q is future directed if and only if v0 ¡ 0.
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So a light-like future directed vector is always –up to a positive multiple– of
the form p1, vq with }v} � 1. For this reason, the setttAdpkqE1ut¡0

kPSOp3q (1.9)

is exactly the set of light-like future-directed vectors of Q.
We are now able to define causality as follows. A point rgs P AdSl belongs

to the interior region if for every direction k P KH , the future light ray lkrgs
intersects the singularity within a finite time. In other words, it is interior when
the whole light cone ends up in the singularity. A point which is not interior
is said to be exterior. A particularly important set is the event horizon, or
simply horizon, defined as the boundary of the interior. When a space contains
a non trivial causal structure (i.e. when there exists a non empty horizon), we
say that the definition of singularity gives rise to a black hole. By extension,
the term “black hole” often refers to the set of interior points.

1.2.3 Some final remarks

Remember that we decree closed orbits to be singular. Now the fact for a point
πpgq P AdSl to be exterior is that there exists an non empty set O of KH such
that �k P O.

π
�
getAdpkqE1

�X S � H.
The restriction of the Killing form to Q reads

Bpq0, q0q � Trpq0q0q � �2, (1.10a)

Bpqi, qiq � Trpqi, qiq � 2 for i ¥ 1. (1.10b)

So the norm on Q is }X} � � 1
2
BpX,Xq. The bi-invariance of the Killing form

and the fact that the decomposition G � Q`H is reductive imply }AdphqX} �}X}, hence
AdpHq|Q � SOpQq. (1.11)

A question is to know the kernel of this inclusion: which h P H fulfill Adphqqi �
qi for all i ? The equation AqiA�1 � qi can be simplified (from a computational
point of view) using the relation A�1 � ηAtη which defines SOp1, nq. It is a
somewhat long but easy computation to prove that A � �1 are the only two
solutions in SOp1, nq to the system ApqiηqAt � qiη.

One can go further than inclusion (1.11) and prove the following

Proposition 1.10.
Let h P H0 seen as a matrix acting on R1,l�1 and let see Adphq as a matrix
acting on Q. In this case we have Adphqij � hij, in particular

AdpH0q � SO0pQq (1.12)

where the index zero denotes the identity component.
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Proof. We will prove that for each unital vector X P Q, the element AdphqX
is a general element of norm 1 in Q when h runs over H0. Explicit matrix
computation will show by the way the equality Adphqij � hij . The general
product to be computed is

AdphqX � ����1 0

0

�� h�1

�
�ÆÆ
����� 0 �w0 w1 � � �
w0

w1

...

�ÆÆÆ
����1 0

0

�� h

�
�ÆÆ
.
But we know that the result is a matrix of Q, so it is sufficient to compute the
first line. If we denote by ci the columns of h, we find

AdphqX � l�1̧

i�0

pw � ciqqi
where the dot denotes the inner product of R1,l�1. Since tciu is a general
orthonormal basis of R1,l�1, the latter expression is a general vector of norm
1 in Q.

1.3 Open and closed orbits

1.3.1 Openness of orbits in homogeneous spaces

Proposition 1.11.
The orbits of AN are submanifolds of G{H.

Proof. Indeed proposition 4.4 in [24] (page 125) makes R{pR X Hq the orbit
of πpeq by R and assure us that it is a submanifold of G{H . That proves the
proposition for the orbit of e.

For the other orbits, we consider the group Rz � Adpz�1qR which is also a
Lie subgroup of G. The space Rz{pRz XHq is isomorphic to the orbit of πpeq
under the action of Rz . Therefore zRrz�1s is a submanifold of G{H and the
very definition of a Lie group makes that Rrz�1s is a submanifold too.

Let us start by computing the closed orbits of the actions of AN and AN̄

on AdSl. In order to see if rgs P AdSl belongs to a closed orbit of AN , we
“compare” the space spanned by the basis tdπdLgqiu of TrgsAdSl and the space
spanned by the fundamental vectors of the action. If these two spaces are equal,
then rgs belongs to an open orbit (because a submanifold is open if and only if
it has same dimension as the main manifold). That idea is precisely contained
in the following theorem which holds for any homogeneous space M � G{H .
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Theorem 1.12.
If R is a subgroup of G with Lie algebra R, then the orbit R �ϑ is open in G{H
if and only if the projection pr : RÑ Q parallel to H is surjective.

The projection is defined by prpXq � XQ if X � XQ �XH is the decom-
position of X P G with respect to the decomposition G � H`Q. We need two
lemmas before to prove the theorem.

Lemma 1.13.
The orbit R � ϑ is open if and only if

SpantX�
ϑ |X P Ru � TϑM

where X� is the fundamental field defined by equation (B.13).

Proof. From general theory of fundamental fields we know that

SpantX�
ϑ |X P Gu � TϑM.

The game is now to prove that one can replace G by R if and only if R � ϑ is
open.
Necessary condition. If R � ϑ is open, we have a neighbourhood of ϑ which
is contained in R � ϑ. Then for any X P G, and for a small enough t, the
element e�tX � ϑ belongs to R � ϑ. Hence we have a path rXptq in R such that
e�tX � ϑ � rXptq � ϑ:

d

dt

�
e�tX � ϑ�

t�0
� d

dt

�
rXptq � ϑ�

t�0
.

Since rXptq is a path in R, we can replace it by a e�tY with a Y P R in the
derivative. For this Y , we have X�

ϑ � Y �
ϑ .

Sufficient condition. We have dimpR � ϑq � dim SpantX�
ϑ | X P Ru �

dim TϑM , so R � ϑ has the same dimension as M . The conclusion follows from
the fact that a submanifold is open if and only if it has maximal dimension.

Lemma 1.14.
The canonical projection is surjective from R to the tangent space to identity:

SpantX�
ϑ |X P Ru � dπepRq. (1.13)

Proof. Consider the following computation when X P R � TeR is given by the
path Xptq � etX :

dπeX � d

dt

�rXptqs�
t�0

� d

dt

�
etXϑ

�
t�0

� Y �
ϑ (1.14)
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with Y � �X . Reading these lines from left to right shows that dπepRq � tX�
ϑ :

X P Ru while reading it from right to left shows the inverse inclusion.

Proof of theorem 1.12. From lemma 1.13 and lemma 1.14, the orbit R � ϑ is
open if and only if dπe : RÑ TϑM is surjective. On the one hand any X P R
can uniquely be written as X � XH � XQ with XH P H and XQ P Q. On
the other hand it is clear that dπeXH � 0, thus R � ϑ is open if and only if
dπe : prQRÑ TϑM is surjective.

Now, recall that dπe is surjective from G, hence it is surjective from Q. The
first conclusion is that if pr : R Ñ Q is surjective, then R � ϑ is open. The
inverse implication remains to be proved.

We know that openness R � ϑ implies that dπe : prQRÑ TϑM is bĳective
(surjective because R � ϑ is open and injective because dπe : Q Ñ TϑM is
injective by proposition B.11). From all that, one concludes that prQR � Q.
Indeed, suppose that XQ P Q and XQ R prQR. Since dπe : prQR Ñ TϑM

is surjective, there exists a X 1
Q P prQR such that dπeX 1

Q � dπeX
1
Q. This is

impossible because dπe is injective from the whole Q.

1.3.2 Open orbits in anti de Sitter spaces

Now the strategy is to to check openness of the R-orbit of rgs by checking
openness of the Adpg�1qR-orbit of ϑ using the theorem 1.12.

The problem is simplified by the following remark. We know that matrices
of K and H are given by

K ;

�
SOp2q

SOpnq
 , H ;

�
1

SOp1, nq
 , (1.15)

so we obviously have¤
sPSOp2q τAN prssq � ¤

sPSOp2q
hPSOpnqrANshs � ¤

kPKrANks � rGs.
This is nothing else than the fact that the AN -orbits are AN -invariant. So the
K part of rgs � ank alone fixes the orbit which contains rgs and we have at
most one orbit for each element in SOp2q. Computations using theorem 1.12
show that the R-orbits of rµs with

µ � �� cosµ sinµ� sinµ cosµ 1�

is not open if and only if sinµ � 0. We will see later that they are actually
closed (page 26), so that the singularity is described as

S � rANp�1SOp2qqs¤rAN̄p�1SOp2qqs. (1.16)
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Because of AN -invariance of the AN -orbits, the equation of the AN -closed
orbits can be expressed as

sinµ � 0. (1.17)

Notice that there are some differences between the two choices of Iwasawa
decompositions of subsections B.49 and B.61 in the determination of open
and closed orbits. In the “new” Iwasawa decomposition (the one which is
always used if not mentioned), up to matrices of H, a general matrix of R is
jJ1 �mM � lL� kJ2. If we note x � m� l,

R;

���� 0 x k �x�x
k�x �ÆÆ
 (1.18)

and it is obvious that the matrix q0 can’t be obtained by combinations of such
matrices. So the R-orbit of ϑ is not open.

If we use the “old” Iwasawa decomposition, the result is completely different.
We have

q0 � pr

�
N �M

2



, q1 � prH2, q2 � pr

�
N � N �M

2



, (1.19)

and other elements of Q are projections of the matrices Vi’s. So we see that
the map pr : RÑ Q is surjective and the orbit R � ϑ is open.

1.3.3 Two other characterizations of the singularity

In this short section, we first give a coordinatewise characterization of the
singularity (which allows some brute force computations), and then we point
out that the vector field J�1 has vanishing norm on the singularity (see also
1.19). That should make the connection with the quotient construction of the
original BTZ black hole. Notice that we do not classify all vectors from which
vanishing of the norm define a singularity. The point is that one can make our
black hole “causally inextensible” by making a discrete quotient of AdSl along
the integral curves of J�1 .

Proposition 1.15.
In term of the embedding of AdSl in R2,l�1, the closed orbits of AN � SOp2, l�
1q are located at y � t � 0. Similarly, the closed orbits of AN̄ correspond to
y � t � 0. In other words, the equation

t2 � y2 � 0 (1.20)

describes the singularity S � SAN YSAN̄ .
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Proof. The different fundamental vector fields of the AN action can be com-
puted with the matricial relation X�rgs � �Xg � ϑ. For example, in AdS3,

M�rgs � ����0 �1 0 1

1 0 �1 0

0 �1 0 1

1 0 �1 0

�ÆÆ
����utx
y

�ÆÆ
� �����t� y

u� x�t� y

u� x

�ÆÆ
� py � tqBu � pu� xqBt � py � tqBx � pu � xqBy.
Full results are

J�1 � �yBt � tBy (1.21a)

J�2 � �xBu � uBx (1.21b)

M� � py � tqBu � pu� xqBt � py � tqBx � pu � xqBy (1.21c)

L� � py � tqBu � pu� xqBt � pt� yqBx � pu � xqBy (1.21d)

W�
i � �xiBt � xiBy � py � tqBi (1.21e)

V �
j � �xjBu � xjBx � px� uqBj , (1.21f)

with i, j � 3, . . . , l � 1. First consider points satisfying t � y � 0. It is clear
that, at these points, the l vectors J�1 , M�, L� and W�

i are linearly dependent.
Thus, there are at most l� 1 linearly independent vectors amongst the 2pl� 1q
vectors (1.21). We conclude that a point satisfying t�y � 0 belongs to a closed
orbit of AN .

Now we show that a point with t� y � 0 belongs to an open orbit of AN .
It is easy to see that J�1 , L� and M� are three linearly independent vectors.
The vectors V �

i gives us l � 3 more. Then they span a l-dimensional space.
The same can be done with the closed orbits of AN̄ . The result is that a

point belongs to a closed orbit of AN̄ if and only if t� y � 0.

This shows that in the three dimensional case, our black hole reduces to the
previously existing one.

The following corollary shows that a discrete quotient of AdSl along the
orbits of J�1 gives a direct higher-dimensional generalization of the non-rotating
BTZ black hole.

Corollary 1.16.
The singularity coincides with the set of points in AdSl where }J�1 }2 � 0 for
the metric induced from the ambient space R2,l�1.

Proof. The expression (1.21a) shows that the norm of J�1 is y2 � t2 which
vanishes on the singularity.

In the three-dimensional case, it was shown in [5, 11] that the non-rotating
BTZ black hole singularity is precisely given by equation (1.20). Hence, the
following is a particular case of theorem 1.2:
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Corollary 1.17.
The non-rotating BTZ black hole is a causal symmetric solvable black hole.

1.3.4 Orbits and topology

Let D� � AN SOpnq SOp2q� where SOp2q� are the subgroups of SOp2q �
SOp2, nq with strictly positive (negative). We see SOp2q and SOpnq as sub-
groups of SOp2, nq in the way indicated by equation (1.15). Notice that the
parts SOp2q and SOpnq are commuting and that SOpnq � H . The notation�1SOp2q refers to the element of SOp2, nq which the identity as AN -component
and �1 as SOp2q-component.

A continuous path from rD�s to rD�s must pass trough an element of the
form rAN1SOp2qs. We saw that the AN -orbit of such an element is not open
while the AN -orbit of an element of rD�s is open. So we deduce that an orbit
passing trough rD�s does not intersects rD�s.

The set rD�s is connected in G{H and D� being open in G, the set rD�s �
πpD�q is also open in G{H from the definition of the topology (see [24], chapter
II, paragraph 4 and particularly the theorem 4.2). Now, the orbits of AN inrD�s (who are all open) furnish an open partition of rD�s. Such a partition is
impossible for an open connected set. We deduce that rD�s is only one orbit
of AN in G{H . The same can be done with rD�s.

We are left with the sets rAN s and rANp�1SOp2qqs whose union is closed
because we just saw that the complement is open. Now we prove that these
two sets are disjoint, in such a way that they have to be separately closed.
Existence of an intersection point between rAN s and rANp�1SOp2qqs would
lead to the existence of a h P H such that an1SOp2q � p�1SOp2qqh, or

h � p�1SOp2qqan,
that is a non trivial K-component to h in the decomposition KAN , but the
only K-component in H is SOpnq. Hence such a h does not exist and Rr1s X
Rr�1SOp2qs � H.

The conclusion is that the Iwasawa group AN has only four orbits :rD�s, rD�s, rAN1SOp2qs, rANp�1SOp2qqs. (1.22)

The two first are open and the other two are closed. Remark that an element
of rKs does not belongs to a closed orbit of AN or AN̄ .

1.4 Horizons

1.4.1 Existence

We are now able to prove that definition 1.3 provides a non empty horizon as
expressed by the condition (1.2). First we consider points of the form SOp2q �ϑ,
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which are parametrized by an angle µ. Up to the choice of this parametrization,
a light-like geodesic trough µ is given by

K � e�sAdpkqE1 � ϑ (1.23)

with k P SOpl�1q and s P R. Using the isomorphism rgs ÞÑ g �ϑ between G{H
and AdSl, we find

lkruspsq � π
�
uetAdpkqE1

� � ��������� cosµ sinµ� sinµ cosµ

1

1

1

. . .

�ÆÆÆÆÆÆÆ
esAdpkqE1

���������1

0

0

0

0
...

�ÆÆÆÆÆÆÆ

� ���������ukpsqtkpsq

xkpsq
ykpsq
zkpsq

...

�ÆÆÆÆÆÆÆ

According to proposition 1.15, this geodesic reaches the singularity if tkpsq2 �
ykpsq2 � 0 for a certain (positive) s. Since AdpkqE1 is nilpotent, the compu-
tation of esAdpkqE1 is simple and we only need the first column because it only
acts on the first basis vector. A short computation shows that

lkrµspsq � ������� cosµ� s sinµ� sinµ� s cosµ

sw1

sw2

...

�ÆÆÆÆÆ
. (1.24)

We conclude that the geodesic reaches SAN and SAN̄ for values sAN and
sAN̄ of the affine parameter, given by

sAN � sinµ

cosµ� w2

sAN̄ � sinµ

cosµ� w2

(1.25)

where w2 is the second component of the first column of k, see equation (1.4);
in particular �1 ¤ w2 ¤ 1.

Since the part sinµ � 0 is precisely SAN , we may restrict ourselves to the
open connected domain of AdSl given by sinµ ¡ 0. More precisely, sinµ � 0

is the equation of SAN in the ANK decomposition. In the same way, SAN̄
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is given by sinµ1 � 0 in the AN̄K decomposition. In order to escape the
singularity, the point rµs needs both sAN and sAN̄ to be strictly positive. It
is only possible to find directions (i.e. a parameter w2) which respects this
condition when cosµ ¡ 0. So the point

u � cosµ � 0 (1.26)

is one point of the horizon. Theorem 1.2 is now proved.
The following proposition contains some physical intuition about the nature

of the horizon.

Proposition 1.18.
A light-like geodesic which escapes the singularity (i.e. which does not intersect
S ) and which passes trough a point of the horizon is contained in the horizon.

Proof. Let x � rgs be a point of the horizon and πpgetAdpkqE1q, a light-like
geodesic escaping the singularity. Near from x, there exists a point y � rg1s in
the black hole. From definition of a black hole, for all k P SOp3q and t0 P R�,
points of the form πpg1et0AdpkqE1q also belong to the black hole. From conti-
nuity, in each neighbourhood of πpget0AdpkqE1q, there is such a πpg1et0AdpkqE1q.
This proves that πpget0AdpkqE1q belongs to the closure of the black hole. But
it is not in the interior of the black hole because (by assumption) the given
geodesic escapes the singularity, so every point of the form π

�
get0 AdpkqE1

�
be-

longs to the horizon.

Let us consider the point of the horizon that we know (the one given by
(1.26)), and see how can that point hope to escape the singularity. Equations
(1.25) which give the time needed to fall into the singularity become

tAN � 1

w2

tAN̄ � � 1

w2

. (1.27)

So for every w2 � 0, this point reaches the singularity within a finite time.
Taking the direction w2 � 0 the point is able to reject his fall to infinity. This
agrees to physical intuition which is that the horizon corresponds to points that
fall into the singularity within an infinite time.

1.4.2 Characterization

Let Drgs be the set of light-like directions (vectors in SOpnq) for which the
point rgs falls into SAN . Similarly, the set Drgs is the one of directions which
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fall into SAN̄ . One can express D in terms of D:

Drgs � tk P SOpnq | Dt for which π
�
getAdpkqE1

� P SAN̄u� tk P SOpnq | Dt for which π
�
θpgqθpetAdpkqE1 q� P SANu� tk P SOpnq | πpkq P D�

θrgs�u� tk P SOpnq | k P �Dpθrgsq�
θ
u,

So
Drgs � pDθrgsqθ (1.28)

where by definition, kθ � Jk with J being defined by θ � AdpJq (θ is the
Cartan involution). It is easy to see that θ changes the sign of the spacial part
of k, i.e. changes wi Ñ �wi.

A main property of kθ is

θpAdpkqE1q � AdpkθqE1.

Since kθ only appears in the expression AdpkqE1, that property is actually a
sufficient characterization of kθ for our purpose. In particular, kθθ � k, but
AdpkθθqE1 � AdpkqE1.

How to express the condition g P H in terms of Drgs ? The condition
to belong to the black hole is Drgs YDrgs � SOpnq. If the complementary of
DrgsYDrgs has an interior (i.e. if it contains an open subset), then by continuity
the complementary Drg1s YDrg1s has also an interior for all rg1s near from rgs.
In this case, rgs cannot belong to the horizon. So a characterization of H is the
fact that the boundary of Drgs and Drgs coincide. Equation (1.28) expresses
this condition under the form

FrDrgs � Fr
�
Dpθrgsq�

θ
, (1.29)

from which one immediately deduces that H is θ-invariant.
We have an expression of Drµs for µ P SOp2q by examining equations (1.25).

The set Drµs is the set of w2 P r�1, 1s such that cosµ� w2 ¡ 0:

Drµs �s � cosµ, 1r. (1.30)

So in order for µ to belong to H , the point rµs must satisfy

Drµs � Drθµsθ �s � 1,� cosµr.
Consequently, if µ1 is the K-component of θµ in the ANK decomposition, we
impose s�cosµ1, 1r� Drθµs !�s�cosµ1, 1r , and we can describe the horizon by

cosµ � � cosµ1 (1.31)

where µ1 is the K-component of µ in the AN̄K decomposition.
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1.5 Simple example on AdS2

As is appendix B.8.1, we see AdS2 as AdpGqH . From definition 1.3, the singu-
larity is the closed orbits of AN and AN̄ for the adjoint action on AdS2, and
the notion of fundamental field is

H�
x � d

dt

�
Adpe�tHqx�

t�0
� �rH,xs. (1.32)

A basis of the Lie algebra A `N is given by tE,Hu. So x will belong to
a closed orbit if and only if E�

x ^H�
x � 0. If we put x � xHH � xEE � xFF ,

the computation is

E�
x ^H�

x � rE, xs ^ rH,xs � 4xHxF pE ^F q � 2xExF pH ^Eq � 2x2
F pH ^F q.

It is zero if and only if xF � 0. The closed orbit of AN̄ is given by the same
computation with H�

x ^F�
x . The part of these orbits contained in AdS2 is the

one with norm 8:
Bpx, xq � 8px2

H � xExF q !� 8.

In both cases, it imposes xH � �1, and the closed orbits in AdS2 are given by

SAN � �H � λE (1.33a)

SAN̄ � �H � λF, (1.33b)

with λ P R. The singularity is then the union SAN YSAN̄ of four lines in the
hyperboloid.

Proposition 1.19.
The singularity can equivalently be described as

S � tx P AdpGqH | }H�
x } � 0u, (1.34)

which has to be compared with corollary 1.16.

Proof. The condition (1.34) on x reads

BprH,xs, rH,xsq � 0. (1.35)

The most general4 element x in slp2,Rq is x � xAH � xNE � xFF . We haverx,Hs � �2xNE�2xFF , so that the condition (1.35) becomes xNxF � 0. The
two possibilities are x � xAH �xNE and x � xAH � xFF . The singularity in
slp2,Rq is composed of the planes pH,F q and pH,Eq. The intersection between
the plane pH,F q and the hyperboloid is given by the equation

BpaH � bF, aH � bF q � 8

4It is actually more than the most general element to be considered because our space is
AdpGqH, which is only a part of slp2,Rq.
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whose solutions are a � �1. The same is also true for the plane pH,Eq. So we
find that the set (1.34) is exactly the four lines (1.33).

One can check that light cone of a given point of the hyperboloid is given
by the two straight lines trough the point; so it automatically intersects the
singularity. As conclusion, every point of AdS2 belong to the black hole. For
this reason we say that there is no black hole in the two dimensional case
because the inclusions (1.2) are in fact equalities. .

1.6 Conclusions and perspectives

Higher-dimensional generalizations of the BTZ construction have been stud-
ied in the physics’ literature, by classifying the one-parameter subgroups of
IsopAdSlq � SOp2, l � 1q, see [2, 3, 6, 22, 26, 32]. Nevertheless, the approach
we adopt here is conceptually different. We first reinterpret the non-rotating
BTZ black hole solution using symmetric spaces techniques and present an
alternative way to express its singularity. We saw the latter as the union of
the closed orbits of Iwasawa subgroups of the isometry group. As shown, this
construction extends straightforwardly to higher dimensional cases, allowing to
build a non trivial black hole on anti de Sitter spaces of arbitrary dimension
l ¥ 3. From this point of view, all anti de Sitter spaces of dimension l ¥ 3

appear on an equal footing.
A natural question arising from this analysis is the following: given a

semisimple symmetric space, when does the set of closed orbits of the Iwasawa
subgroups of the isometry group, seen as singularity, define a non-trivial causal
structure ? We answered this question in the case of anti de Sitter spaces, using
techniques allowing in principle for generalization to any semisimple symmetric
space.

We also proved that performing a discrete quotient along the orbits of J1

makes the resulting space causally inextensible (closed space-like curves appear
in the singular part of the space), but we did not address questions like: are
there other vector fields defining singularities (in the three dimensional case,
we know that the answer is positive) ? Can we identify a mass and an angular
momentum from these hypothetic vectors ? Are all BTZ black holes obtainable
in this way in higher dimensions ?
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Chapter 2

Deformation of anti de

Sitter spaces

Abstract

We are now going to apply deformation theory to the physical part
of the AdS4 black hole. The first idea was to deform the AN of SOp2, l�
1q and to deform AdSl by action of this group (see section A.4 for an
introduction to deformation by group action). We show in section 3.2
that this procedure is possible.

Instead of that, we will only deform an open orbit of AN in the
four dimensional case1. There are two reasons for that. First a physical
domain of the black hole is contained in an open orbit of AN ; and second
it reveals possible to deform such a domain by action of a four dimensional
group. Deforming a four dimensional space by a four dimensional group
instead of a six dimensional one is a matter of “no waste” of dimensions.

The main lines of the construction are the following:

• We pick an open orbit U of AN in AdS4, and we select a pointrus P U .

• We compute the stabilizer S of rus in AN , in such a way that,
as homogeneous space, U � AN{S. We consider the “remaining
group” R1 of R when one removes S from R.

• We prove that R1 acts freely and transitively on U , so that U is
globally of group type (definition 2.1).

• It turns out that R1 does not accept any symplectic structure; hence
we will search for other groups acting transitively on U , and show
that one and only one of them accepts a symplectic structure.

• The latter group turns out to be a split extension of an Heisenberg
group (see appendix A.5) for which we know a deformation.

1But the structure of algebra (B.59), promises easy higher dimension generalisation.

33
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2.1 Group structure on the open orbits

2.1.1 Global structure

The following definition formalises the idea for a manifold to be “like a group”.
We will prove that the physical domain of our anti de Sitter black hole is of
this type.

Definition 2.1.
A m-dimensional homogeneous space M is locally of (symplectic) group
type if there exists a Lie (symplectic) subgroup R of the group of automorphisms
of M which acts freely on one of its orbits in M . The homogeneous space is
globally of group type if R has only one orbit. In this case, for every choice
of a base point ϑ in M , the map RÑM : g ÞÑ g.ϑ is a diffeomorphism.

Lie groups are themselves examples of symmetric spaces (globally) of group
type. In the symplectic situation, however, a symplectic symmetric Lie group
must be abelian ([8], page 12). We will see in what follows other non-abelian
examples.

In the context of our anti de Sitter black hole (in particular when one has
causal issues in mind), it is not important to deform the whole space but it is
sufficient2 to only deform one open orbit of AN . Indeed, if an observer begins
his life somewhere in the physical space (hence in an open orbit of AN), he will
never exit the orbit because one open orbit of AN is bounded by closed orbit
of AN which are singular.

Let us recall that the solvable part of the Iwasawa decomposition of sop2, 3q
may be realized with a nilpotent part N and an abelian one A with elements

A � tJ1, J2u N � tW,V,M,Lu (2.1a)

and the commutator tablerV,W s �M rV, Ls � 2W (2.2a)rJ1,W s �W rJ2, V s � V (2.2b)rJ1, Ls � L rJ2, Ls � �L (2.2c)rJ1,M s �M rJ2,M s �M, (2.2d)

where we know that that W , J1 P H, and J2 P Q. We pick the pointrus � ��� 0 1�1 0 13�3

�
�
.

2We will however point out in the perspectives (section 1.6) that a quantization of the
whole space has a real interest.
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This is an element of K which, as already mentioned in page 26, therefore does
not belong to a closed orbit of AN , neither to a one of AN̄ . Hence rus lies in
the physical part of AdS4. We denote by U the AN -orbit of rus.

Elements of the stabilizer of rus in SOp2, 3q are elements r such that r �rus �rus, i.e. elements for which there exists h in H such that ru � uh. It is easy
to check that r1 � eaJ2 and r2 � ebV are solutions by noticing that the action
of u�1riu leaves unchanged the first basis vector3.

The stabilizer cannot contain more than two generators because an open
orbit must be four dimensional. The stabilizer of rus in G � SOp2, 3q is thus
the group generated by eaJ2 and ebV plus eventually a discrete set making S
non connected. The group S is in fact connected because

S � tr P R | r � rus � rusu � tr P R | Adpu�1qr P Hu. (2.3)

Since R is an exponential group, we have S � expS where

S � tX P R | Adpu�1qX P Hu � AdpuqH.
The set S being connected (because it is the image by a continuous map of the
connected set H), S is connected too.

The open orbit that we are studying is thus realised as the homogeneous
space U � AN{S. An important result is the fact that what we obtain by
simply removing J2 and V from the table (2.2) is still an algebra. The orbit
U is therefore isomorphic to the group R1 generated by the Lie algebra R1 �tJ1,W,M,Lu. The table of R1 isrJ1,W s � �W (2.4a)rJ1, Ls � L (2.4b)rJ1,M s �M. (2.4c)

From construction, R1 X S � teu. Unfortunately, using the conditions (B.83),
we find that in order to be compatible with the Lie algebra structure, the form
ω of the algebra must satisfy ωpW,Mq � ωpW,Lq � ωpM,Lq � 0, so that it is
degenerate. The action of R1 on U enjoys however some remarkable properties.

Proposition 2.2.
The action

τ : R1 � U Ñ U
rrr0us � rrr0us (2.5)

is free and simply transitive.

3We give in a complement a more intrinsic way to prove that result, see page 41.
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Proof. First, we prove that the action of R1 is transitive. As an algebra, R is
a split extension R � S `ad R

1. Hence, as group, R � SR1, or equivalently
R � R1S. That proves that the action is transitive.

If the action is not simply transitive, there exists x P U and r, r1 P R1 such
that τrx � τr1x. Since the action of R1 is transitive, we have a r1 P R1 such that
x � r1rus. In this case, the element r�1

1 r�1r1 of R1 fixes rus, but R1 X S � teu.
Then one deduces that r1 � rr1, so that rrr1us � rr1r1us � rrr2

1us. It follows
that r1 fixes rus, and thus that r1 � e, so that r � r1.

For freeness remark that, in a neighbourhood of e, the neutral e itself is the
only element trivially acting on rus.

As corollary, the orbit U is locally of group type R1.
Proposition 2.3.
The orbit U is simply connected.

Proof. The fibration S Ñ RÑ U induces the long exact sequence of cohomol-
ogy groups

H0pUq Ñ H0pRq Ñ H0pSq Ñ H1pUq Ñ H1pRq Ñ . . .

The group R being connected and simply connected, the sequence shows that
H0pSq � H1pUq, but we already mentioned that S is connected, so H1pUq � 0.

Corollary 2.4.
The open orbit U is globally of group type.

Proof. It is immediately apparent from proof of proposition 2.2. Since

R1rus � R1Srus � Rrus � U ,
the group R1 acts freely on U and has only one orbit.

Remark that it remains to be proved that U is globally of symplectic group
type. For that, there should be a symplectic form on R1. Exploiting the fact
that SpantW,M,Lu is a three-dimensional abelian subalgebra of R1, it is easy
to see that R1 does not accepts a symplectic form. Hence corollary 2.4 does not
proves that U is globally of symplectic group type. The lack of symplectic form
on the algebra reflects on U as manifold by the following lemma, and motivates
the search for other four-dimensional groups than R1 acting transitively on U .

Lemma 2.5.
The open orbit U � R � rus does not admit any R-invariant symplectic form.
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Proof. Let ωU be such an invariant symplectic form and ωR
1

be the pull-back
of ωU by the action: ωR

1 � τ�ωU . We have dτ � dLr1 � dLr1 � dτ because
τpr1Xptqq � rr1Xptqus � r1τpXptqq, thus

L�r1ωR1 � pτ � Lr1q�ωU � pLr1 � τq�ωpUq � ωR
1
,

so that ωR
1

is a R1-invariant symplectic form on R1. But we saw that such a
form does not exist.

Proposition 2.6.
The R-homogeneous space U admits a unique structure of globally group type
symplectic symmetric space. The latter is isomorphic to pR0, ω, sq described in
appendix A.5.5.

The next few pages are dedicated to prove this proposition and to give ex-
plicit algebra whose group gives the answer. We are searching for 4-dimensional
groups R̃ which

• has a free and simply transitive action on U , i.e. R̃rus � Rrus,
• admits a symplectic structure,

and we want it to be unique. As already mentioned, the algebraR1 fails to fulfil
the symplectic condition. The algebra R̃ � SpantA,B,C,Du of a group which
fulfils the first condition must at least act transitively on a small neighbourhood
of rus and thus be of the form

A � J1 � aJ2 � a1V (2.6a)

B �W � bJ2 � b1V (2.6b)

C �M � cJ2 � c1V (2.6c)

D � L� dJ2 � d1V. (2.6d)

Indeed, in a first attempt, we choose an algebra for which each of A, B, C
and D contains a combination of J1, W , M and L. We consider the matrix
of coefficients of J1, W , M and L in A, B, C and D. If the determinant
of this matrix is zero, then one of the lines can be written as combination of
the three others. In this case the action can even not be locally transitive
because the algebra only spans three directions actually acting (J2 and V have
no importance here). So the determinant is non vanishing. In this case, the
inverse of this matrix is a change of basis which puts A, B, C and D under the
form (2.6).

The problem is now to fix the parameters a, a1, b, b1, c, c1, d, d1 in such a
way that SpantA,B,C,Du becomes a Lie algebra (i.e. it closes under the Lie
bracket) which admits a symplectic structure and whose group acts transitively
on U . We will begin by proving that the surjectivity condition imposes b � c �
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d � 0. Then the remaining conditions for R̃ to be an algebra are easy to solve
by hand.

First, remark that A acts on the algebra SpantB,C,Du because J1 does
not appears in rR,Rs. Hence we can write R̃ � RA `ad SpantB,C,Du and,
a subalgebra of a solvable exponential Lie algebra being a solvable exponential
algebra, a general element of the group R̃ reads r̃pα, β, γ, δq � eαAeβB�γC�δD.
Our strategy will be to split this expression in order to get a product SR1
(which is equivalent to a product R1S). As Lie algebra, SpantB,C,Du �RJ2`adtW,M,L, V u. Hence there exist functions w, m, l, v and x of pα, β, γ, δq
such that

eβB�γC�δD � exJ2ewW�mM�lL�vV . (2.7)

We are now going to determine lpα, β, γ, δq and study the conditions needed in
order for l to be surjective on R. Since J2 does not appear in any commutator,
the Campbell-Baker-Hausdorff formula yields x � βb � γc � δd. From the
fact that rJ2, Ls � �L, we see that the coefficient of L in the left hand side
of (2.7) is �lp1 � e�xq{x. The V -component in the exponential can also get
out without changing the coefficient of L. We are left with r̃pα, β, γ, δq �
eαAexJ2eyV ew

1W�m1M�lL where w1 andm1 are complicated functions of pβ, γ, δq
and l is given by

lpβ, γ, δq � �δpβb� γc� δdq
1� e�βb�γc�δd , (2.8)

which is only surjective when b � c � d � 0. Taking the inverse, a general
element of R̃rus reads

�
e�wW�mM�lMej1J1u

�
, where the range of l is not the

whole R. Since the action of R1 is simply transitive, R̃ is not surjective on Rrus
when lpα, γ, δq is not surjective on R.

When b � c � d � 0, the conditions for (2.6) to be an algebra are easy to
solve, leaving only two a priori possible two-parameter families of algebras.

1. The first one is the following:

A � J1 � 1

2
J2 � sV rA,Bs � B � sC

B �W rA,Cs � 3

2
C

C �M rA,Ds � 2sB � 1

2
D

D � L� rV rB,Ds � �rC.
with r � 0. The general symplectic form on that algebra is given by

ω1 � ����0 �α �β �γ
α 0 0 2βr

3

β 0 0 0

γ � 2βr
3

0 0

�ÆÆ
, (2.10)
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detω � �
2βr

3


2

,

Conditions: β � 0, r � 0. That algebra will be denoted by R1. The
analytic subgroup of R whose Lie algebra is R1 is denoted by R1. One
can eliminate the two parameters in algebra R1 by the isomorphism

φ � ����1 0 0 0

0 1 0 4s

0 2sr 1{r 4s2{r
0 0 0 1

�ÆÆ
 (2.11)

which fixes s � 0 and r � 1. The algebra R1 is thus isomorphic torA,Bs � B rA,Cs � 3

2
CrA,Ds � 1

2
D rB,Ds � �C. (2.12)

Comparing with equation (A.92), one recognizes the one-dimensional ex-
tension of Heisenberg algebra with parameters d � 3{4, µ � 0 and

X � �
1 0

0 1{2
. Hence R1 is isomorphic to R0 and, by the way, we

have a product on that group (see appendix A.5).

2. The second algebra whose group acts simply transitively on U is:

A � J1 � rJ2 � sV rA,Bs � B � sC

B �W rA,Cs � pr � 1qC
C �M rA,Ds � 2sB � p1 � rqD.
D � L

There is no way to get a nondegenerate symplectic form on that algebra.

From proposition A.22, the symplectic structure to be chosen on R1 is δC�
and lemma A.29 shows that we are able to quantize4 R1 with any symplectic
form in the coadjoint orbit δ

�
C� � Adpgq� with g P R1. The coadjoint adjoint

action of R1 on R1 can be computed using the fact that R1 splits into four

4by opposition to deform: there are no symplectic condition in deformation.
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parts; the non trivial results are

AdpedDAq � A� d

2
D AdpeaAqB � eaB

AdpecCqA � A� 3c

2
C AdpeaAqC � e3a{2C

AdpebBqD � D � bC AdpeaAqD � ea{2D
AdpebBqD � D � bC.

Direct computations show that

Ad
�
eaAebBecCedD

�pxAA� xBB � xCC � xDDq� xAA� eapxB � xAbqB� e3a{2�xC � 3xAc

2
� bxD � bdxA

2

	
C� ea{2�xD � dxA

2

	
D,

(2.13)

so that, with more compact notations,�
C� �Adpgq�pXq � �

xC � 3xAc� bxD � bdxA
2

2

�
e3a{2, (2.14)

and the symplectic forms that we are able to deform are given by δ
�
C��Adpgq�.

It provides a two-parameter familly of symplectic forms

ω
g
1 � ���� 0 0 β γ

0 0 0 �2β{3�β 0 0 0�γ 2β{3 0 0

�ÆÆ
, (2.15)

detω
g
1 � 4β4

9
.

It turns out that the action of the group R1 has good properties that are
given in the following proposition.

Proposition 2.7.
The action of R1 on U is free and simply transitive.

Proof. First remark that the algebra R1 can be written as a split extension:

R1 � RA`ad RD `ad SpantB,Cu,
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hence a general element of R1 reads

r1pa, b, c, dq � eaAedDebW ecM . (2.16)

The work is now to expand it by replacing A, B, C, D by their values in
function of J1, W , M , L, J2 and V , and then to try to put all elements of S
on the left. This is done by virtue of Campbell-Baker-Hausdorff formula. The
fact that SpantW,M,N, V u is nilpotent dramatically reduces the difficulty. We
have

lnpedrV edLewW emM q � drV � dL� pd2r � wqW � p1
6
d2r2 �m� 1

2
drwqM.

One can find m and w (functions of d) such that the right hand side reduces
to drV � dL. Hence we have, for some auxiliary functions w and m,

edrV�dL � edrV edLewpdqWempdqM
and a general element of R1 reads

easV�a2 J2edrV eaJ1edLe

�
wpdq�b�W e�mpdq�c�M � spa, dqr1pa, b, c, dq (2.17)

with s P S and r1 P R1 which defines a bĳective map r1 ÞÑ r1 from R1 to R1.
This proves the transitivity of the action of R1.

For freeness, just remark that in a neighbourhood of e, no element of R1

(but e) leaves rus unchanged.

The conclusion is that R1 is the group R̃ that we were searching for and
that it is unique (up to the two-parameter isomorphism (2.11)) as symplectic
subgroup of AN acting transitively on U . It concludes the proof of proposition
2.6.

2.1.2 Alternative more intrinsic proofs

Proposition 2.8.
Let J P ZpKq whose associated conjugation coincides with the Cartan involu-
tion: AdpJq � θ and u P SOp2, l � 1q such that u2 � J and u P eQ XK. Then
the AN -orbit of rus is open.

Proof. Let us find the Lie algebra S of the stabilizer S of rus. First, the Cartan
involution X ÞÑ �Xt is implemented as AdpJq with

J � ��12�2 13�3
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which satisfies u2 � J and σpuq � u�1 because u P Q. Now, Adpu�1qr P H if

and only if σ
�

Adpu�1qr	 � Adpu�1qr. Using the fact that σ is an involutive
automorphism, we see that this condition is equivalent to

θσr � r. (2.18)

On the one hand the Cartan involution θ restricts on A to θ|A � � id

because A � P ; and on the other hand, σpAq � A because J1 P H and J2 P Q.
So σ splits A into two parts: A � A� ` A� with A� � A X H � RJ1 and
A� � AXQ � RJ2. Let β1, β2 P A� be the dual basis: βipJjq � δij . We know
that W P Gβ1

, V P Gβ2
, L P Gβ1�β2

, and M P Gβ1�β2
. The set of simple roots

is given by
∆ � tα � β1 � β2, β � β2u,

and the positive roots are

Φ� � tα, β, α� β, α� 2βu,
in terms of whose, the space N is given by

W P Gα�β V P Gβ
L P Gα M P Gα�2β .

Since pσ�βqph1J1 � h2J2q � β2ph1J1 � h2J2q � �h2, we find we find

σ�β � �β
σ�α � α� 2β

σ�pα� βq � α� β

σ�pα � 2βq � α.

We are now able to identify the set S � tX P A`N | σθX � Xu. Let us take
X P R � A`N and apply σθ:

X � X� �X� �Xα �Xβ �Xα�β �Xα�2β ,

θX � �X� �X� � Y�α � Y�β � Y�β � Y�pα�βq � Y�pα�2βq,
σθX � �X� �X� � Z�pα�2βq � Zβ � Z�pα�βq � Z�α (2.19)

where Xϕ, Yϕ and Zϕ denote elements of Gϕ, and X� denote the component
A� of X .

It is immediately apparent that σθX� � X�, so that X� P S. The only
other component common to X and σθX is in Gβ , but it is a priori not clear
that Xβ � Zβ. We know however that σθV � αV because Gβ has only one di-
mension. Using the fact that σ and θ are commuting involutions, it is apparent
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that α � �1. Decomposing V into V � VH � VQ, we have θσV � θpVH � VQq
which has to be equal to V or �V . Thus there are only two possibilities

θVH � VH or θVH � �VH
θVQ � �VQ θVQ � VQ.

If one compares the commutator table of SOp2, 3q with the one of SOp2, 2q, one
sees that V is not present in SOp2, 2q. Since H possesses every purely spatial
rotation generators, the orthogonal complement Q contains the time-time ro-
tation as only rotations. Other components of Q are boost. In particular, VQ
is zero or a boost generator. In the latter case, θVQ � �VQ, and the conclusion
is that σθV � V . In the other case, VQ � 0 implies that V P H which is
impossible because rJ2, V s � 0 while J2 P Q and rQ,Hs � Q.

The stabilizer S is thus generated by J2 and Gβ � RV , i.e.

S � SpantJ2, V u. (2.20)

The stabilizer of rus being two-dimensional, the orbit of rus is four-dimensional
and is then open in AdS4.

Notice that in contrast to the first way to find S, this time we have no
eventually double covering problems.

Let R̃ be a subgroup of R whose Lie algebra is a complement of S in R,
i.e. R̃ ` S � R. This group does not act transitively on U if and only if the
boundary of R̃rus is non empty. Let x0 � τr1

0
rus belong to that boundary with

r10 P R1. On that point, the fundamental fields of R̃ are not surjective on the
tangent space of U :

ker
�
R̃Ñ Tx0

U
� � t0u

Y ÞÑ Y �
x0
.

Let Y P R̃ belongs to this kernel: Y �
x0
� 0. Since the linear map

�
dτr1�1

0

�
x0

is

nondegenerate, Y �
x0

vanishes if and only if
�
dτr1�1

0

�
x0

pY �
x0
q � 0, but�

dτr1�1

0

�
x0

pY �
x0
q � � d

dt

�
r1�1

0 etY r10rus�
t�0

� �
Adpr1�1

0 qY ��rus� prR̃
�

Adpr1�1
0 qY � (2.21)

because, on the point rus, the action to take the fundamental field is nothing
else than the projection parallel to S. Hence the group R̃ is not surjective if
and only if �

AdpR1qS�X R̃ � t0u.



44 CHAPTER 2. DEFORMATION OF ANTI DE SITTER SPACES

We are now going to determine AdpR1qS. Let X � X��Xβ P S and act with
an element of R1 � exp

�
A� ` Gα ` Gα�β ` Gα�2β

�
:

AdpeH��Yα�Yα�β�Yα�2β qpX� �Xβq � X� �Xβ� �
H� � Yα � Yα�β � Yα�2β , X

� �Xβ

�looooooooooooooooooooooooomooooooooooooooooooooooooon
N 1� 1

2

�
H� � Yα � Yα�β � Yα�2β , N

1�� . . .

The computation of N 1 is as follows:rH�, X�s � 0 rH�, Xβs � 0rYα, X�s � �αpX�qYα rYα, Xβs � Zα�βrYα�β , X�s � �pα� βqpX�qYα�β � 0 rYα�β , Xβs � Zα�2βrYα�2β , X
�s � �pα� 2βqpX�qZ 1

α�2β rYα�2β , Xβs � 0,

so N 1 � �αpX�qYα � Zα�β � Zα�2β � pα � 2βqpX�qZ 1
α�2β . Since βpH�q �

0, the computation of rH�, N 1s, produces terms like rH�, Xα�βs � pα �
βqpH�qXα�β � αpH�qXα�β . Therefore, rH�, N 1s � αpH�qN 1 and

AdpeH��Y qpX� �Xβq � X �N 1 �
ķ¥1

1pk � 1q!αpH�qkN 1� X � eαpH�q � 1

αpH�q N 1 (2.22)

What we have proven is the following result.

Proposition 2.9.
The group R̃ acts transitively on U if and only if the Lie algebra R̃ does not
contains elements of the form

X � eαpH� � 1

αpH�q N 1
with X P S and Y P R1; the element N 1 being given by

N 1 � �αpX�qYα � Zα�β � Zα�2β � pα� 2βqpX�qZ 1
α�2β

where X � X� � Xβ is the decomposition of an element of S and Zϕ are
elements of their respective root spaces Gϕ.
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One can distinguish three case: the first is X � X� P A�, the second is
X � Xβ P Gβ and the last one is X � X� �Xβ (X� � 0 � Xβ).

In the first case, formula (2.22) forbids R̃ to contains elements of the form

X� � Gα `α�2β . (2.23)

The second case forbids elements of the form

Xβ � Gα�β ` Gα�2β , (2.24)

and the third case forbids

X� �Xβ ` Gα ` Gα�β ` Gα�2β . (2.25)

We can extract constraints on the coefficients of algebra (2.6) from that anal-
ysis. The third interdiction makes that a linear combination of J2 and V in an
element of R̃ can only occur in A, so that

bb1 � cc1 � dd1 � 0.

The second interdiction says that B and C cannot contain V alone, so b1 �
c1 � 0. Finally, the first condition imposes c � d � 0 because C and D cannot
contain J2 alone. The remaining constraints for (2.6) to be an algebra are easy
to solve by hand. The results are the same two algebras as previously found.

2.1.3 Local group structure

We saw in proposition 2.7 that the open orbit U can be identified with the
group generated by the algebra tJ1,W,M,Lu.

We want to find an algebra (whose group is) acting transitively on a neigh-
bourhood of rus in the AN orbit of rus and which admits a symplectic form.
Let A,B,C,D be a basis of this algebra. For local transitivity, each of them
must contains at least one of J1,W,M and L. As in the previous case, the
most general algebra to be studied is

A � J1 � aJ2 � a1V (2.26a)

B �W � bJ2 � b1V (2.26b)

C �M � cJ2 � c1V (2.26c)

D �M � dJ2 � d1V. (2.26d)

Among such algebras, we will have to check surjectivity of the action and the
possibility to endow with a symplectic form.

If we impose that SpantA,B,C,Du is a subalgebra for the bracket inherited
from sop2, 3q, we find a lot of conditions on the coefficients a, b, c, d, a1, b1, c1
and d1. If, for example, we look at rA,Bs, we findrA,Bs �W � a1M � ab1V � a1bV.
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In this combination, the coefficient of W is 1 and the one of M is a1, so the
only possibility is rA,Bs � B � a1C. This leads to the following conditions
(equating coefficients of J2 and V ):

b� a1c � 0 (2.27a)

b1 � a1c1 � ab1 � a1b. (2.27b)

Proceeding in a similar way for the six different commutators, we find:
For rA,Cs

ac1 � a1c � pa� 1qc1 (2.27c)pa� 1qc � 0, (2.27d)

for rA,Ds p1 � aqd� 2a1b � 0 (2.27e)

ad1 � a1d � 2a1b1 � p1� aqd1, (2.27f)

for rB,Cs pb� c1qc � 0 (2.27g)pb� c1qc1 � bc1 � b1c, (2.27h)

for rB,Ds �d1c� 2b1b� bd � 0 (2.27i)�d1c1 � bd1 � 2pb1q2 � bd1 � b1d, (2.27j)

for rC,Ds
cd1 � c1b1 (2.27k)

cd � c1b. (2.27l)

Solutions of these equations5, parametrized by reals r and s and the corre-
sponding commutators are listed below.

The next step is to determine which of these algebras admit a compati-
ble symplectic structure. For this, we just have to consider a general skew-
symmetric matrix

ω � ����0 �α �β �γ
α 0 �δ �σ
β δ 0 �ǫ
γ σ ǫ 0

�ÆÆ

5from now until the determination of symplectic forms, all results are computed by Max-

ima [1].



2.1. GROUP STRUCTURE ON THE OPEN ORBITS 47

and, for each algebra, solve the four constrains. In the first algebra (see below),
we find for example

ω1prA,Bs, Cq � ω1prB,Cs, Aq � ω1prC,As, Bq � ��5ω1pC,Bq
2

!� 0,

so that ω1pC,Bq � 0. Full results are listed below (the symplectic matrices
are written in the basis tA,B,C,Du). We see in particular that most of the
solutions reduce to the canonical algebra, Rc given byra, bs � b ra, cs � 2c rc, ds � c.

1. As first solution, we find of course the same algebraR1 as the one of page
38.

2. The second solution is also the same as the previously found one.

3. The third solution is

A � J1 � J2 � sV rA,Bs � B � sC

B �W � r

2
V rA,Cs � 2C

C �M rA,Ds � 2sB

D � L� rJ2 rB,Ds � �rBrC,Ds � �rC,
ω � ����0 �α �β �γ

α 0 0 βrs�2αr
2

β 0 0 βr
2

γ �βrs�2αr
2

�βr
2

0

�ÆÆ
, (2.28)

detω � β4r2s2

4
� αβ3r2s

2
� α2β2r2

4
,

Conditions: r � 0, β � 0 and α � βr. The map φ3 : R3 Ñ Rc
φ3 � ����1 0 0 r

0 1{2s 0 1

0 s 1 s2

0 0 0 r

�ÆÆ
.
(detφ3 � r{2s) provides an isomorphism between R3 and the canonical
algebra.
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4. The fourth solution is

A � J1 � J2 � sV rA,Bs � B � sC

B �W rA,Cs � 2C

C �M rA,Ds � 2sB

D � L� rJ2 � rsV rB,Ds � �rsCrC,Ds � �rC,
ω � ����0 �α �β �γ

α 0 0 βrs
2

β 0 0 βr
2

γ �βrs
2

�βr
2

0

�ÆÆ
, (2.29)

detω � β4r2s2

4
� αβ3r2s

2
� α2β2r2

4
.

Conditions: r � 0, β � 0 and α � βs. The map φ4 : R4 Ñ Rc
φ4 � ����2 0 0 �r

0 1 1{s rs

0 1 0 2rs

3 0 0 �r�ÆÆ

(detφ4 � �r{s) provides an isomorphism between R4 and the canonical
algebra.

5. The fifth solution is

A � J1 � J2 � sV rA,Bs � B � sC

B �W � rsJ2 � rs2V rA,Ds � 2sB � 2D

C �M � rJ2 � rsV rB,Ds � 2rs2B � rs3C � rsD

D � L� rs2J2 � rs3V rC,Ds � �2rsB � rs2C � rD,

ω � ���� 0 �α �β βrs2�2αrs�2ǫ
r

α 0 0 ǫs

β 0 0 �ǫ�βrs2�2αrs�2ǫ
r

�ǫs ǫ 0

�ÆÆ
 (2.30)

detω � β2ǫ2s2 � 2αβǫ2s� α2ǫ2, (2.31)

Conditions: r � 0, ǫ � 0, α � �βs. The map φ5 : R5 Ñ Rc
φ5 � ����1 0 0 0

0 1 0 2s

0 0 0 �1

0 �rs r rs2

�ÆÆ
 (2.32)
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(detφ5 � r) provides an isomorphism between R5 and the canonical
algebra.

6. The sixth solution is

A � J1 � J2 rA,Bs � B

B �W rA,Cs � 2C

C �M rC,Ds � �rC,
D � L� rJ2

ω � ����0 �α �β �γ
α 0 0 0

β 0 0 βr
2

γ 0 �βr
2

0

�ÆÆ
, (2.33)

detω � �
αβr

2


2

, (2.34)

Conditions: α � 0, β � 0 and r � 0. This algebra is isomorphic to the
next one.

7. The seventh solution is

A � J1 � J2 rA,Bs � B

B �W rA,Ds � 2D

C �M � rJ2 rC,Ds � �rD,
D � L

ω � ����0 �α �β �γ
α 0 0 0

β 0 0 γr
2

γ 0 �γr
2

0

�ÆÆ
, (2.35)

detω � ��αγr
2

	
, (2.36)

and the conditions are α � 0, γ � 0, r � 0. The map φ7 : R7 Ñ Rc
φ7 � ����1 0 0 0

0 1 0 0

0 0 0 1

0 0 r 0

�ÆÆ

(detφ7 � �r) provides an isomorphism between R7 and the canonical
algebra.

All these algebras are solvable of order two (the commutators of commutators
vanish) — but not nilpotent.
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2.2 Isospectral deformations of M

In this section, we present a modified version of the oscillatory integral product
(A.101) leading to a left-invariant associative algebra structure on the space
of square integrable functions on R0. Why is it better that the initial prod-
uct defined over smooth compactly supported functions ? The motivation of
considering the square integrable functions is the fact that the spectral triple
defined in non commutative geometry contains the space of square integrable
spinors (see the book [19]). The fact to stabilize the space of square inte-
grable functions is then an indispensable step in order to put our results in the
framework of spectral geometry.

Theorem 2.10.
Let u and v be smooth compactly supported functions on R0. Define the follow-
ing three-point functions:

S :�SV � coshpa1 � a2qx0, coshpa2 � a0qx1, coshpa0 � a1qx2

�� à
0,1,2

sinh
�
2pa0 � a1q�z2; (2.37)

and

A :� �
cosh

�
2pa1 � a2q� coshp2pa2 � a0qq coshp2pa0 � a1qq�

coshpa1 � a2q coshpa2 � a0q coshpa0 � a1q�dimR0�2
� 1

2

.

Then the formula

u Æp2qθ v :� 1

θdimR0

»
R0�R0

Ae
2i
θ
Sub v (2.38)

extends to L2pR0q as a left-invariant associative Hilbert algebra structure. In
particular, one has the strong closedness property:»

u Æp2qθ v � »
uv.

Proof. The oscillatory integral product (A.101) may be obtained by intertwin-
ing the Weyl product on the Schwartz space S (in the Darboux global coor-
dinates (A.100)) by the following integral operator [9]:

τ :� F�1 � pφ�1
θ qÆ � F,

F being the partial Fourier transform with respect to the central variable z:

F puqpa, x, ξq :� »
e�iξzupa, x, zqdz;
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and φθ the one parameter family of diffeomorphism(s):

φθpa, x, ξq � pa, 1

coshp θ
2
ξqx, 1

θ
sinhpθξqq.

Set J :� |pφ�1qÆJacφ|� 1

2 and observe that for all u P C8 X L2, the function
J pφ�1qÆu belongs to L2. Indeed, one has» |J pφ�1qÆu|2 � » |φÆJ |2 |Jacφ| |u|2 � » |u|2.
Therefore, a standard density argument yields the following isometry:

Tθ : L2pR0q ÝÑ L2pR0q : u ÞÑ F�1 �mJ � pφ�1qÆ � F puq,
where mJ denotes the multiplication by J . Observing that Tθ � F�1 �mJ �
F �τ , one has Æp2qθ � F�1�mJ �F pÆθq. A straightforward computation (similar
to the one in [7]) then yields the announced formula.

Let us point out two facts with respect to the above formulas:

1. The oscillating three-point kernel A exp
�

2i
θ
S
�

is symmetric under cyclic
permutations.

2. The above oscillating integral formula gives rise to a strongly closed,
symmetry invariant, formal star product on the symplectic symmetric
space pR0, ω, sq.

Proposition 2.11.
The space L2pR0q8 of smooth vectors in L2pR0q of the left regular representa-
tion closes as a subalgebra of pL2pR0q, Æp2qθ q.
Proof. First, observe that the space of smooth vectors may be described as the
intersection of the spaces tVnu where Vn�1 :� pVnq1, with V0 :� L2pR0q andpVnq1 is defined as the space of elements a of Vn such that, for all X P R0, X.a
exists as an element of Vn (we endow it with the projective limit topology).

Let thus a, b P V1. Then, pX.aq Æ b � a Æ pX.bq belongs to V0. Observing
that D � V1 and approximating a and b by sequences tanu and tbnu in D, one
gets (by continuity of Æ): pX.aq Æ b� a Æ pX.bq � limpX.an Æ bn� an Æ pX.bnqq �
limX.pan Æ bnq � X.pa Æ bq. Hence a Æ b belongs to V1. One then proceeds by
induction.

2.3 Spin structure and Dirac operator

Construction of the frame bundle is a straightforward adaptation of theorem
2.2 (chapter II) in [23], while connection issues are adapted from proposition
1.3 (chapter III). According proposition B.3, notations G and H stand for the
identity components of SOp1, l � 1q and SOp2, l � 1q.
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2.3.1 Frame bundle and spin structure

An element of the frame bundle is a map from Q to T pG{Hq of the form6

dµg � A where g P G and A P SO0pQq. By proposition 1.10, there exists a
h P H for which A � Adphq for every A P SO0pQq so we have

dµg �A � dπ � dLg �Adphq � dπ � dLg � dLh � dRh � dπ � dLg � dLh � dµgh

hence in fact every element in the frame bundle reads dµg for some g P G.
We conclude that the fibre Brgs over rgs is made of maps of the form dτk with
k P rgs. The action of H on the frame bundle is given bypdµgq � h � dµg �Adphq.
Proposition 2.12.
The map

β : GÑ B

g ÞÑ dµg
(2.39)

is a principal bundle isomorphism between the frame bundle and the principal
bundle

G

π

H

G{H (2.40)

where π is the natural projection, the action of H is the right one and the wavy
line means “acts on”.

Proof. Surjectivity of β is clear. For injectivity, suppose dµg � dµg1 . In order
for the two target spaces to be equal, one needs g1 � gh for a h P H . Now we
have, for all qj P Q,

dµgqj � dµghqj � dπdRh�1dLgdLhqj � dπdLg
�

Adphqqj�, (2.41)

but dπ is an isomorphism from Qg, so we deduce that qj � Adphqqj . Since
we are using the connected component of SOpQq, that implies that h � e, and
thus that g � g1. The following proves that β is a morphism:

βpghq � dπdLgdLh � dπdLgdLhdRh�1 � dπdLg Adphq � βpgq � h.
The following lemma provides a convenient way to express the tangent

bundle over G{H as an associated bundle to the principal bundle (2.40). We
denote by G�ρ Q the quotient of G �Q by the equivalence relation pg,Xq �pgh,Adph�1qXq for all h P H .

6See B.3.2 for notations.
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Lemma 2.13.
The map

β : G�ρ QÑ TMrg,Xs ÞÑ dτgdπX
(2.42)

with ρphqX � Adph�1qX is diffeomorphic.

Proof. In order to check that β is well defined, first compute

βrgh,Adph�1qXs � dτghdπAdph�1qX � dπdLgh Adph�1qX,
and then using the fact that dπdRh � dπ, the latter line reduces to dπdLgX �
βpg,Xq. For injectivity, let βrg,Xs � βrg1, X 1s. In order for these two to
be vectors on the same point, there must exists a h P H such that g1 � gh.
The equality becomes dπdLgdLhX

1 � dπdLgX . Commuting dπ with dLg
and using the fact that dτg is an isomorphism, we are left with the condition
dπdLhX

1 � dπX .
An element of G{H is an equivalence class which contains exactly one ele-

ment of Q. In the right hand side of the condition, this element is X while the
element of Q in the class dπdLhX is AdphqX 1. Equating these two elements,
we find the condition X 1 � Adph�1qX , which proves that rg,Xs � rg1, X 1s and
concludes the proof of the injectivity of β.

The following proposition will prove useful in order to identity the spin
structure over AdS4.

Proposition 2.14.
If G is a connected Lie group and if Z is the center of G, then

1. AdG is an analytic homomorphism from G to IntpGq, with kernel Z,

2. the map rgs Ñ AdGpgq is an analytic isomorphism from G{Z to Intpgq
(the class rgs is taken with respect to Z).

On the one hand that proposition among with the fact that Z
�

SPp2,Rq�
proves that the quotient SPp2,Rq{Z2 is isomorphic to Int

�
spp2,Rq�. On

the other hand one knows that SO0p2, 3q has no center, so that SO0p2, 3q �
Intpsop2, 3qq. But the subsection B.11.2 provides an isomorphism between
sop2, 3q and spp2,Rq. Thus we have

SPp2,Rq{Z2 � SO0p2, 3q. (2.43)

We denote by ϕ : SPp2,Rq Ñ SO0p2, 3q the corresponding homomorphism
with kernel Z2. In particular the restriction ϕ|SLp2,Cq is a double covering
of SO0p1, 3q. But χ is the same kind of double covering, so universality of
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SLp2,Rq on SO0p1, 3q provides an automorphism f : SLp2,Cq Ñ SLp2,Cq such
that ϕ � χ � f . The spin structure to be considered on AdS4 is

Spinp1, 3q SPp2,Rq ϕ
SO0p2, 3q SO0p1, 3q

AdS4

where the action of Spinp1, 3q on SPp2,Rq is given by a � s � af�1psq where we
identified Spinp1, 3q with SLp2,Cq as subgroup of SPp2,Rq. One immediately
has ϕpa � sq � ϕpaqχpsq.
2.3.2 Connection

There are a lot of ways to express a vector field X : G{H Ñ T pG{Hq. From the
identification T pG{Hq � G�ρQ, one has X : G{H Ñ G�ρQ. As section of an
associated bundle, X can be expressed by an equivariant function X̂ : G Ñ Q
such that Xrgs � rg, X̂pgqs. The H-equivariance of X̂ means that X̂pghq �
Adph�1qX̂pgq. Let X P G and consider the function

ÂX : GÑ Q
g ÞÑ �

Adpg�1qX�
Q

(2.44)

which is equivariant because the decomposition G � H `Q is reductive. The
corresponding vector field is

AX rgs � �
g,
�

Adpg�1qX�
Q

�
;

or
AX rgs � dτgdπ

�
Adpg�1qX�

Q
� dπdLg

�
Adpg�1qX�

because dπXQ � dπX . It is easy to check that the form

ωgpXq � ��dLg�1X
�
H

is a connection form on the principal bundle (2.40). We are going to determine
the associated covariant derivative of this connection on the tangent space, and
prove that it is torsion free. The horizontal lift of AXrgs is

AXpgq � dLg
�

Adpg�1qX�
Q
� d

dt

�
get prQ Adpg�1qX�

t�0
. (2.45)

The equivariant function associated with the covariant derivative of AY in the
direction of AX is given by pAXqgÂY . Using expressions (2.44) and (2.45) of
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ÂY pgq and AXpgq, we havepĀXqgÂY � d

dt

�
ÂY

�
get prQ Adpg�1qX�

Q

�
t�0� d

dt

� �
Ad

�
e�t prQ Adpg�1qXg�1

�
Y
	
Q

�
t�0� �

ad
�� prQAdpg�1qX�

Adpg�1qY 	
Q� � ��

Adpg�1qX�
Q
,Adpg�1qY �

Q
.

This commutator is an expression of the form rZQ, Z 1
Q�Z 1

HsQ. Using reducibil-
ity we find pAXqgÂY � ���Adpg�1qX�

Q
,
�

Adpg�1qY �
H

�
. (2.46)

The commutator producespAXqgÂY � pAY qgÂX � �ÂrX,Y spgq,
which by construction the equivariant function associated with the vector field
∇AXAY �∇AY AX ; so on the one hand we havep∇AXAY �∇AY AXqrgs � �dτgdπÂrX,Y spgq � �dτgdπ�Adpg�1qrX,Y s�

Q� �dπdRgrX,Y s.
On the other hand,rAX , AY srgs � dπrdRgX, dRgY s � �dπdRgrX,Y s,
which proves that the connection is torsion free.

We are now going to study the horizontal vector fields on SPp2,Rq with
this connection and the homomorphism h�1 of equation (B.80). We have to
study for which elements Σa P SPp2,Rq the expression

ωapΣaq � ωh�1paq�pdh�1qaΣa� � ��dLh�1paq�1dh�1Σa

	
H

(2.47)

vanishes. Every such element can of course be written under the form Σa �
dLaψX for some X P sop2, 3q. So we are lead to consider the expressionpdh�1qapdLaqeψX. (2.48)

It is easy to deal with that expression in the case of a � e:pdh�1qeψpXq � ψ�1ψX � X.
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In particular, if Σ P T , then dh�1Σ P Q and when Σ P I, we have dh�1Σ P H.
This result propagates to other elements a P SPp2,Rq using the general result

df � dLg � �
dlfpgq� � df

which holds for any group homomorphism f . Using that property with h�1 on
the point a P SPp2,Rq, we find pdh�1qa � pdLaqe � �

dLh�1paq� � pdh�1qe, and
the expression (2.47) becomes

ωapdLaψXq � �
dL�

h�1paq��1dh�1dLaψX
	
H
� XH.

It is zero if and only if X P Q, so that the horizontal vectors on a are exactly
the ones of dLaψQ � Ta.
2.3.3 Dirac operator

When ŝ : SPp2,Rq Ñ ΛW is the equivariant function associated with a spinor,
the Dirac operator readsxDspaq � gijγ

jz∇tispaq � gijγ
jtipaqŝ � gijγ

j t̃ipaqŝ (2.49)

where the metric g is the usual four-dimensional Minkowskian metric and the
matrices γ are the associated 4 � 4 Dirac matrices. The elements t̃ipaq �
dLati � dLaψpqiq span the natural basis of Ta, see appendix B.11.3. The ma-
trices γi are the usual 4� 4 Dirac matrices for the 4-dimensional Minkowskian
metric.

One can find a change of basis which express the Dirac operator in terms
of vectors of R1. For that, let tXiu be a basis of R1. We have

X�
i rus � d

dt

�re�tXius�
t�0

� �dπdRuXi

that is necessarily decomposable by corollary B.12as combinations of vectors
of the form dπdLuqi because rus belongs to an open orbit of the action of R1.
That defines a matrix B by

dπdLuqi � BijdπdRuXj ,

and then a vector Y P H by

qi � Bij Adpu�1qXj � Y. (2.50)

Now we have t̃ipaq � dLaψ
�

Adpu�1qBijXj � Y �. We can go further using the

fact that ψ
�

Ad
�
h�1paq�X	 � AdpaqψpXq for every a P SPp2,Rq and X P G.

Defining the vectors si � Ad
�
hp�1q�ψXi we find

t̃ipaq � Bij s̃ipaq � �ψpY qpaq. (2.51)
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2.4 Perspectives

A main achievement of spectral non-commutative geometry is the ability of
retrieving the original Riemannian manifold from the data of the spectral triple.
Such a result does not exist in the case of AdS because the latter is a non-
compact pseudo-Riemannian manifold. The main lines of such a reconstruction
method can however be foreseen in the case of anti de Sitter space.

• Knowing the family of products Æp2qθ , we know in particular the usual
commutative product of functions. That should allow us to find back the
manifold AdS4.

• It is possible to extract the data of the curvature of the manifold from
the data of its Dirac operator as the non-differential part of its square.
That part will of course appear to be constant and negative (because we
know that we were starting from anti de Sitter).

We only quantized an open orbit of AdS4 because it is a whole physical
domain. Quantization of the full space could be very interesting because of a
special effect of the noncommutative product: two functions with disjoint sup-
ports can have a non vanishing product. What about the physical significance
of that property when one multiplies a function supported in the singularity
by a function supported in the physical part ?

There is another reason to study the quantization of the full space. We will
show in section 3.2 that a deformation of the full space by action of the Iwasawa
component of SOp2, l� 1q is possible. That quantization has the advantage of
deforming the space by the action of the group which is precisely defining the
singularity. In other words the same group can describe a singularity and
a quantization. A work to be done is to try and recover the special causal
structure from the data of the quantized manifold. That structure must be in
some way contained in the spectral triple.
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Chapter 3

Two notes for further

developments

Abstract

This chapter contains two directions that were explored during my
thesis and that were not finished for different reasons.

In the first section, we state a result of Unterberger in [35] which
provides a deformation of the complex half-plane, and we show how to
translate it as a new noncommutative product on the group ax�b, i.e. the
Iwasawa subgroup of SLp2,Rq. The technique of deformation by group
action described in appendix A.4 then induces a deformed product on
the dual of its Lie algebra. We do not study the properties (symmetries,
maximal functional space of convergence, symplectic condition to be a
true quantization, . . . ) of this product, but we show that Unterberger’s
result assures the existence of at least one good functional space. Un-
fortunately the formula reveals not to be universal; we show the lack of
universality on two examples of actions of the group ax � b on AdS2.
The failure is due to divergences of the derivatives of the functions zi
(see equation (A.89)).

This study is motivated by the fact that recent work (not published
yet) of P. Bieliavsky provides an universal deformation of the AN of
SLp2,Rq. We are thus allowed to say that the latter new product is
“better” than the one of Unterberger. We do not address the question to
know the precise point that makes the lack of universality in Unterberger.

The second section is an application of the extension lemma (lemma
A.19). We show that all the ingredients needed to deform the AN of
SOp2, nq are present. The idea was to deform the AdS black hole using
the action of the so-deformed AN . That should provide an alternative
way to deform AdS to the one presented in chapter 2, and a quantization
of AdSl using the same group as the group which defines a black hole.

59
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That method would use the deformation by group action machinery de-
scribed in appendix A.4. The arising question is naturally to know if
that quantization is in some sense equivalent to the one given in chapter
2 or not. That question is not answered yet.

3.1 Formula of Unterberger on SLp2,Rq
The following results come from [35] (from page 1219) and provide a deforma-
tion1 of the half-plane

D � tpξ, ηq | η ¡ 0u � R2.

Before to give the precise statement that will be used, we need some def-
initions. A first product is defined by (we will precise the functional space
later):pf � gqpξ, ηq �

α̧,β

p�1qα
α!β!

p4iπq�α�βpBαq Bβp f̃qp0, 0qpBβq Bαp g̃qp0, 0q (3.1)

where
f̃pp, qq � f

�
p� ξ

�
q �a

1� q2
�
, η
�
q �a

1� q2
�	
,

and the same for g̃. In particular,pf � gqp0, 1q � 4

»
f
�
Ψpq1, p1q�g�Ψpq2, p2q�e�4iπp�q1p2�q2p1q dq1 dp1 dq2 dp2.

with
Ψpp, qq � �

p, q �a
1� q2

�
Definition 3.1.
Let r1, r2 and n be real numbers with r1 ¥ 0. We denote by Σnr1,r2

the space
of functions f P C8pDq such that for all pj, kq P N �N, there exists a C ¡ 0

such that ��� � BBξ
j �η BBη
k fpξ, ηq��� ¤ Cηr1p1� ηqr2p1� |ξ|qn�j. (3.2)

Now, theorem 8.2 in [35] states

Theorem 3.2.
Let f P Σnr1,r2

and g P Σn
1
r1

1
nr1

2

. For each N P N0, the function

hN � f�g� ¸
α�β¤N�1

p�1qα
α!β!

p4iπq�α�β ¸
j,k,j1 ,k1 Cj,kβ,αCj1 ,k1α,β pej1ek2fqpej11 e

k1
2 gq (3.3)

1or, at least, a new noncommutative product.
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belongs to the space Σn�n1�N
r1�r11,r2�r12 if constants Cj,kα,β are defined by the require-

ment that pǫβ2 ǫα1 fqpξ0, η0q �
j̧,k

C
j,k
α,βpej1ek2fqpξ0, η0q

for every smooth function f and pξ0, η0q P D when j � k ¤ α � β and j ¥ α

and C
j,k
α,β � 0 otherwise. The operators ǫi are defined by ǫ1 � e1 � Bξ and

ǫ2 � 2
�
1� �

η0

η

�2��1pξ0Bξ � η0Bηq.
For our purpose, the point is that there exists a product on FunpDq and

that theorem 3.2 provides a functional space stabilized by the product. We are
now going to translate this result in terms of the Iwasawa subgroup R � AN

of SLp2,Rq that is parametrized (see (B.22)) bypa, lq � �
ea lea

0 e�a
 .
The map

j : RÑ R1pa, lq ÞÑ pe2a, le2aq (3.4)

provides an isomorphism between R and the group

R1 � "pα, βq � �
α β

0 1



, α ¡ 0

*
.

The inverse of j is j�1pα, βq � plnα1{2, βα�1q. The group R1 acts on D bypα, βq � pξ, ηq � pξ � βα�1η, α�1ηq (3.5)

which is a freely transitive action. For each choice of “reference point” pξ0, η0q P
D we build an identification i : D Ñ R1 by the requirement ipξ, ηq � pξ0, η0q �pξ, ηq, that is

ipξ, ηq � �
η0

η
,
ξ � ξ0

η



. (3.6)

Now we can identify D to R by k : D Ñ R, k � j�1 � i. For the choicepξ0, η0q � p0, 1q, we find kpξ, ηq � pkapξ, ηq, klpξ, ηqq where

kapξ, ηq � �1

2
ln η, klpξ, ηq � ξ (3.7)

and the function f on R corresponds to the function f̃ � f � k on D.
The result of Unterberger is that the function f “can be quantized” if������ BBξ
j �η BBη
k f̃pξ, ηq����� ¤ Cηr1p1 � ηqr2p1� |ξ|qn�j (3.8)
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where n, r1 and r2 are real numbers and r1 ¥ 0. We want to see what condition
has to be imposed on f in order for f̃ to fulfil this condition. In other words,
we want to express the operator

Aij � � BBξ
j �η BBη
k
in terms of the coordinates on R. For that we compute Bξf̃ and pηBηqf̃ in terms
of Blf and Baf .

Let us precise that, when we write expressions like ηBη, we mean for examplepηBη f̃qpξ, 2q � 2pBηfqpξ, 2q.
For Bξf̃ we have: pBξ f̃qpξ, ηq � pBlfq � kpξ, ηqpBξkkqpξ, ηq� pBafq � kpξ, ηqpBξkaqpξ, ηq,
using the formula (3.7), we find pBξf̃qpξ, ηq � pBlfq � kpξ, ηq and we conclude
that Bξf̃ � pBlfq � k. (3.9)

For pηBηqf̃ , we findpηBηqpf � kqpξ, ηq � η
�Bηpf � kq�pξ, ηq� ηpBafq � kpξ, ηqpBηkaqpξ, ηq� ηpBlfq � kpξ, ηqpBηklqpξ, ηq� �1

2
pBafq � kpξ, ηq,

and we conclude that pηBηqpf � kq � �1

2
pBafq � k. (3.10)

So the operator Aij , expressed on R, reads

Aijpf � kq � ��1

2


j pBjaBilfq � k, (3.11)

and condition (3.8), with pξ, ηq � k�1pa, lq � pl, e�2aq reads now���� 1

2k
pBkaBjl fqpa, lq���� ¤ Ce�2r1ap1 � e�2aqr2p1� |l|qn�j (3.12)
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with r1 ¥ 0 and r2, being any real number. From now on this regularity
condition will be referred as the Unterberger’s condition. That condition char-
acterises a stable functional space for the Unterberger product on R.

We want now to test the deformation of manifold by action of R. A some-
what deceiving result that will be shown is that Unterberger’s deformation of R
is not an universal deformation in the sense that we will find some action of R
on manifold for which the action deformation does not provides a deformation
of the manifold.

3.1.1 Action on the dual of its Lie algebra

The action if given bypa, lq � ξ � pyH � 2yElqH� � yEe
�2aE�

where ξ � yHH
� � yEE

� is any point in R�. The question is to know if the
product pu ÆR� vq makes sense when u and v are compactly supported smooth
functions on R�. In order to address this question, we have to check if for
every ξ in R�, the functionpαξuqpa, lq � u

�pa, lq�1 � ξ� � u
�pyH � 2yEe

�2alq, yEe2a
�

fulfils condition (3.12). So we consider

fpa, lq � u
� pyH � 2yEe

�2alqlooooooooomooooooooon
zHpa,lq , yEe

�2aloomoon
zEpa,lq �

,

and we computepBlfqpa, lq � pBHuqpzH , zEqBlpyH � 2yEe
�2alq� pBEuqpzH , zEqBlpyEe�2aq� pBHuqpzH , zEqp�2yEe

�2aq,
so pBjl fqpa, lq � pBjHuqpzH , zEqp�2yEe

�2aqj . (3.13)

The combination yEe
�2a which goes out is precisely zE which remains in the

derivative of u. But the derivative of u has compact support. Hence, in fact,
the coefficient yEe�2a remains constrained in the domain where the derivative
of u does not vanishes. The point is that the coefficient which go out with
derivatives is exactly made of zH and zE.

So R� is as deformable as D. More precisely, a deformation of R� by action
of R is induced by the deformation of D by Unterberger.
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3.1.2 First action on the two dimensional anti de Sitter

space

We see AdS2 as in B.8.2 and we consider the following action of AN on AdS2:

r � AdpgqH � Adpgr�1qH.
It is easy to see what does this action become in terms of the cylinder:�

eyAHeyNE
� �Ad

�
exKT exNE

� � Ad
�
exKT exNE�yNEeyAH�H

where the adjoint action of eyAH on H is of course trivial. Thus we havepyA, yNq � pxK , xN q � pxK , xN � yN q. (3.14)

Notice that only one dimension of AN really acts. This action is thus not the
most natural one, but is gives an interesting first toy model. Using the notations
of coordinates (B.63), we consider x � φpθ, hq P AdS2 and u P C8

c pCylq, a
compact supported function on AdS2 and we computepαxuqpa, lq � u

�pa, lq�1 � x� � u
�p�a,�le2aq � x� � u

�
θ, h� le2a

�
,

so that if we pose fpa, lq � u
�
θ, h� le2a

�
, we havepBlfqpa, lq � e2apB2uqpθ, le2aq.

When one makes aÑ8 and lÑ 0 in such a way that le2a remains constant, the
function pBlfq diverges in an exponential way with respect to a. It contradicts
Unterberger’s condition (3.12).

3.1.3 Second action on the two dimensional anti de Sitter

space

Let us now study the more natural action

r � AdpgqH � AdprgqH. (3.15)

It is in general very difficult to find, for given yA, yN , xK and xN , the numbers
(unique by construction) zK and zN such that

AdpeyAHeyNEexKT exNEqH � AdpezKT ezNEqH.
In order to simplify the computations, we use the lemma A.21 which states
that we only have to perform the computation for one pxK , xN q in each orbit.
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We begin by xK � xN � 0, i.e. the orbit of H itself. First, computations show
that

AdpezKT ezNEqH �� cosp2zKq � sinp2zKqzN�H� 2
�

cosp2zKqzN � sinp2zKq�E� ��
cosp2zKq � 1

�
zN � sinp2zKq	T.

Next,

AdpeaHelEqH � �
1 �2e2al

0 �1


 � H � 2e2alE.

Comparing with the general form, we find that

AdpeaHelEqH � Adpele2aEqH, (3.16)

or pa, lq � p0, 0q � p0, le2aq. What is important in our deformation problem is
the function pαHuqpa, lq � u

�p�a,�le2aqq �H� � up0,�lq.
This function of course satisfies the Unterberger condition when u has a com-
pact support.

The second orbit that we study is the one of V � AdpeπT {4qH � �2E � T .
One has

AdpeaHelEqV � �lH � e�2ape4al2 � e4a � 1qE � e�2aT.

If we pose c � cosp2zKq, s � sinp2zKq and b � e2a, we have to solve the system$''''''&''''''% c� szN � �l (3.17a)�2czN � 2s � 1

b
pb2l2 � b2 � 1q (3.17b)pc� 1qzN � s � 1

b
(3.17c)

c2 � s2 � 1 (3.17d)

with respect to c, s and zN . One can check that the following is a solution:

c � b2l2 � 2b2l � b2 � 1

b2l2 � 2b2l � b2 � 1
(3.18a)

s � 2bp1� lq
b2l2 � 2b2l � b2 � 1

(3.18b)

zN � b2p1 � l2q � 1

2b
. (3.18c)



66 CHAPTER 3. TWO NOTES FOR FURTHER DEVELOPMENTS

If we pose z̄Kpa, lq � zKp�a,�le2aq and z̄N pa, lq � zN p�a,�le2aq, we have

z̄Kpa, lq � 1

2
arcsin

�
2e�2ap1� le2aq

l2 � 2le�2a � e�4a � 1



(3.19)

2z̄Npa, lq � e�2a � e2apl2 � 1q. (3.20)

The principle of deformation by action of group leads us to deal with the
function

fpa, lq � upz̄Kpa, lq, z̄Npa, lqq,
which should satisfies Unterberger’s condition when u is compactly supported.
Notice that zK is a compact variable, so that u can be non vanishing for all
values of zK without violate the compact support requirement. The derivative
of f with respect to a uses the chain rule, and it is apparent the higher order
derivatives have to use the Leibnitz formula:BfBa pa, lq � pB1uqpz̄K , z̄NqBz̄KBa pa, lq � pB2uqpz̄K , z̄NqBz̄NBa pa, lq.
In order to give an idea of what is going on, here is the first derivative of z̄K
with respect to a: pBaz̄Kqpa, lq � 2e2a

e4al2 � 2e2al � e4a � 1
.

Let us look at the limit aÑ �8 on the line l � e�2a. If one performs multiple
derivatives of fpa, lq with respect to a, Leibnitz rules yields a lot of terms of
the form pBp1Bq2uq�z̄Kpa, lq, z̄Npa, lq�pBiaz̄Kqpa, lqjpBka z̄Nqpa, lqm. (3.21)

On the line l � e�2a, the numerator of pBiaz̄Kqpa, lq is pe4a � 4q2i while the
numerator is a sum and product of monomials of the form pe4a � Nq with
N ¡ 0. At the limit, this factor in (3.21) goes to a finite number. The factorpBka z̄Nqpa, lq is very different becausepBka z̄N qpa, lq � p�1qk2k�1e�2a � 2k�1e2apl2 � 1q.
which becomes

2k�1e�2a
�p�1qk � 1

�� 2k�1e2a

on l � e�2a. It goes to zero when a Ñ �8 and k is even, but is goes to �8
at the same limit when k is odd. The highest divergence in all the terms of
type (3.21) in pBnafq is expected for maximal m, so when i � j � 0. This is a
divergence as

x ÞÑ e2pn�1qx.
Notice that this divergence increases when the order of derivative increases.
Hence it contradicts Unterberger’s condition which works with parameters r1

and r2 who are constant with respect to the order of the derivative.
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3.2 Deformation of SOp2, nq
3.2.1 Decomposition as split extension

We try to decompose A `N as symplectic sum in order to use the extension
lemma. In that purpose, let us consider the change of basis (B.60) in A:
H1 � J1 � J2 and H2 � J1 � J2.

If H1 P s2, then L, Vi,Wi P s2 because s1 must act on s2. Hence M P s2 and
H2 remains alone in s1. That proves that H1 P s1. If we suppose that H2 P s2,
we find

s1 � tH1, Lu
s2 � tH2, Vi,Wj ,Mu. (3.22)

The case H1, H2 P s1 leads to

s1 � tH1, H2,

evenhkkkikkkj
Va, . . . Vbu

s2 � tM,L,Wi, Vothersu. (3.23)

The symplectic condition excludes the second decomposition. Indeed for each
s such that rH1, ss � αs (i.e. s � Vi,Wj , L), we have

Ω2

�
eadH1M, eadH1s

� � eαΩ2pM, sq !� Ω2pM, sq.
Hence Ω2pM, sq � 0. This proves that the decomposition (3.23) imposes the
symplectic form Ω2 to be degenerate. We are left with decomposition (3.22).

Root space decomposition of SUp1, nq can be found on pages 314–315 of
[28]: it has dimA � 1, dimG2f � 1 and dimGf � 2pn � 1q. In s2, we have
Vi P G1, Wj P G1, M P G2, and when we look atAdSl � SOp2, l�1q{ SOp1, l�1q,
we have l� 3 matrices Vi and Wj . Therefore s2 is nothing else than the A`N
of sup1, l�2q (recall l ¥ 3). The analysis shows that s1 is the A`N of sup1, 1q.
3.2.2 Conclusion and perspectives

For our AdSl black hole, the algebra of the group which defines the singularity
is the split extensionpA`N qsop2,l�1q � pA`N qsup1,1q `ad pA`N qsup1,l�2q.
A deformation of the corresponding groups is given in the article [9], and the
extension lemma A.19 yields now an oscillatory integral universal deformation
formula for proper actions of the Iwasawa subgroup of SOp2, l�1q. That remark
provides an alternative way to deform the black hole to the one presented in
section 2.1.
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The availability of a quantization of AdSl by action of AN is an opportunity
to embed our black hole toy model in the framework of noncommutative geom-
etry. Indeed, the quantization of AdSl is the data of the anti de Sitter manifold
and the action of the group AN ; that is precisely the data which defines the
black hole of chapter 1. So we would be able to “see” the causal issue from
the data of the deformed spectral triple. Remark that a causal structure (in
the physical meaning of the term) is a special property of pseudo-riemannian
manifolds for which spectral geometry does not exist yet.

An important remaining problem with that method is the fact that the
extension lemma does not assure the existence of a stable functional space for
the new product. So there is still a lot of analytic work to be done.



Appendix A

Deformations

Abstract

Deformation is a main theme of research in the present work. We
begin here to describe WKB quantization and a general method to guess
deformations of function algebras. The role of Darboux charts and mo-
mentum maps appears clearly. A careful example is given by the defor-
mation of SLp2,Rq.

We prove a useful result (from [17]), the extension lemma, which
allows to deform a split extension when one knows a deformation of the
two components of the extension. The kernel is simply the product of
the two kernels.

Then we see the principle of deformation by group action: when a
Lie group is deformable, one can find a deformation of any manifold on
which the group acts. Universal formulas exist in some cases. This is
why deformations of groups are studied. An application of that extension
lemma to the Iwasawa subgroup of SOp2, nq is given in chapter 3.

A.1 WKB quantization

More details can be found in the article [15]. A manifold M is given with its
usual commutative and associative algebra pC8pMq, �q of smooth functions. A
deformation, or a quantization1, of M is the data of a new product ÆM

~
on a

functional space over M .
Let G be a Lie group acting on a manifold M . We consider FunpM,Cq, the

space of all the maps from M to C, without any regularity conditions. The

1In fact, we make a difference between these two words. A deformation is only the fact
to find a new product from an old one; the new product depends on a parameter and has to
reduce to the old one when the parameter goes to zero. A quantization is a deformation in
which the first order term (whatever it means) of the new product contains the symplectic
structure as in condition (A.4) below.

69



70 APPENDIX A. DEFORMATIONS

regular left representation of G on M is the representation of G on FunpMq
given by rL�g paqsphq � apghq (A.1)

for all a P FunpMq, g, h P G.

A.1.1 Definitions and general setting

Let pM,ω,∇q be an affine symplectic manifold, i.e. a 2n-dimensional symplectic
manifold pM,ωq endowed with a torsion-free connection ∇ such that ∇ω � 0.
The automorphism group AutpM,ω,∇q is defined as

AutpM,ω,∇q � Affp∇q X Symppωq
where Affp∇q is the group of affine transformations of the affine manifoldpM,∇q and Symppωq is the group of symplectomorphisms of pM,ωq.

Let R be a subgroup of AutpM,ω,∇q. The following definition of a R-
invariant WKB quantization can be found in [7].

Definition A.1.
A R-invariant WKB quantization of pM,ω,∇q is the data of a productpu Æθ vqpxq � 1

θ2n

»
M�M aθpx, y, zqe iθSpx,y,zqupyqvpzq dy dz (A.2)

(where dy dz is the Liouville measure ωn{n!) with the following constrains:

1. For each θ, we have a space Aθ containing the space C8
c pMq of compactly

supported smooth functions. The product Æθ extends to Aθ in such a way
that pAθ, Æθq becomes a one-parameter family of associative �-algebras.

2. The product �0 on A0 is the usual pointwise product and pA0, �0q is a
Poisson subalgebra of C8pMq for the induced Poisson structure from the
symplectic form ω.

3. �θ ¥ 0, the space Aθ is a �-vector subspace of C8pMq such that

C8
c pMq � A0 � Aθ

where the involution � on C8pMq is the usual complex conjugation.

4. S is a real valued smooth function S : M �M �M Ñ R such that for
all x0 P M , the function Spx0, ., .q P C8pM �Mq has a nondegenerate
critical point at px0, x0q.

5. The functions aθ are positive real-valued:

aθ : M �M �M Ñ R�.
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6. The functions S and aθ are invariant under the diagonal action of R on
M �M �M .

7. �x PM and �u, v P C8
c pMq with support in a suitably small neighbour-

hood of x, a stationary phase method yields the extensionpu Æθ vqpxq � upxqvpxq � θ

i
c1pu, vqpxq � opθ2q (A.3)

where c1 satisfies
c1pu, vq � c1pv, uq � 2tu, vu. (A.4)

We emphasize the fact that the functional space AM is stable under Æθ:
this is a strict quantization in contrast to a formal star product which only
stabilises the space of formal power series of θ.

An example of WKB quantization is the Weyl product which is nothing but
an integral reformulation of the Moyal star product:pf ÆW~ gqpxq � 1

~2n

»
R2n�R2n

e
2i
~
S0px,y,zqfpyqgpzq dy dz

where S0px, y, zq � Ωpx, yq � Ωpy, zq � Ωpz, xq, and Ω denotes the usual sym-
plectic form on R

2n.
The function K � aθe

i
θ
S is the kernel of the product Æθ. The associativ-

ity of Æθ on the functional space Aθ is the fact that the equality�pu Æθ vq Æθ r�pxq � �
u Æθ pv Æθ rq�pxq

holds for every u, v, r P Aθ and x P M . That condition translates under an
integral form to the following relation»

M�M Kpx, y, zq �»
M�M Kpy, t, squptqvpsqµM pt, sq� rpzqµM py, zq� »

M�M Kpx, y, zqupyq �»
M�M Kpz, t, sqvptqrpsqµM pt, sq�µM py, zq (A.5)

where µM py, zq � µM pyqµM pzq is the Liouville measure on M . Performing
formal manipulations (such as a Fubini theorem), one can express this condition
as »

M

Kpx, y, tqKpt, p, qqµptq � »
M

Kpx, τ, qqKpτ, y, pqµpτq. (A.6)

That form is easier to handle and to check, but it is meaningless in general.
The fact to have a left-invariant kernel on a group G means that the

kernel K : G�G�GÑ C has the property L�gK � K, or

Kpgh1, gh2, gh3q � Kph1, h2, h3q (A.7)
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for every g P G. The following lemma allows us to use group isomorphisms to
push forward a kernel from a group to another.

Lemma A.2.
Let G1 and G2 be two symplectic Lie groups and K1, a left-invariant kernel
on G1 which provides an associative product on the functional space A1. Let
φ : G2 Ñ G1 be a symplectic Lie group isomorphism. Then the kernel K2 �
φ�K1 is invariant and gives rise to an associative product on A2 � φ�A1.

Proof. By definition,pφ�K1qph1, h2, h3q � K1

�
φph1q, φph2q, φph3q�.

Therefore, using the left-invariance of K1, we have

L�gφ�K2 � pφ � Lgq�K2 � pLg � φq�K2 � φ�L�φpgqK1 � φ�K1.

That proves left-invariance of φ�K1 on G2. Now we prove the associativity of
K2, this is to check condition (A.5). We have»

G2�G2

K2px, y, zq� »
G2�G2

K2py, t, sqpφ�uqptqpφ�vqpsqµ2pt, sq�pφ�rqpzqµ2py, zq� »
G2�G2

K1pφx, φy, φzq� »
G2�G2

K1pφy, φt, φsqupφtqvpφsqµ2pt, sq�
rpφzqµ2py, zq.

We perform in this integral the change of variables τy � φy, τt � φt, τz � φz

and τs � φs. This does not affect the measure because φ is a symplec-
tomorphism and µi are the Liouville measures on Gi, so that for example,
µ2ptq � µ2pφ�1τtq � µ1pτtq. The previous integral becomes»

G1�G1

K1pφx, τy , τzq� »
G1�G1

K1pτy, τt, τsqupτtqvpτsqµ1pτt, τsq�
rpτzqµ1pτy, τzq.

Using now the associativity of K1 on G1 and performing the inverse change of
variables, we find»

G2�G2

K2px, y, zqpφ�uqpyq� »
G2�G2

K2pz, t, sqpφ�vqptqpφ�rqpsqµ2pt, sq�
µ2py, zq,
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which proves the associativity of K2 on φ�A1.
Notice that condition (A.6) can be checked in much the same way.

It is worth noticing that lemma A.2 needs a group isomorphism while one
often only has a Lie algebra isomorphism. Due to Campbell-Backer-Hausdorff
formula, it may be very difficult to find a group isomorphism from an algebra
one.

Remark A.3. Most of the time, the symplectic condition (A.4) does not have to
be checked because we just define the symplectic form ω2 on G2 as ω2 � φ�ω1

where ω1 is the symplectic form on G1.

Definition A.4.
When α : G � A Ñ A is an action of a Lie group G on a vector space A,
one says that the element a P A is a differentiable vector of α if the map
g ÞÑ αgpaq is a differentiable map from G into A.

We are now interested in the regular left representation L : R � Aθ Ñ Aθ
given by

�
Lrpuq�pxq � upr � xq. A function u P Aθ is a differentiable vector of

L when the map
αu : RÑ Aθ

r ÞÑ Lrpuq (A.8)

is differentiable. The differential of αu is what we will denote by dL in the next
few pages: dLpXqu � pdαuqeX . By definition,pdαuqeX � d

dt

�
αupetXq�

t�0
� d

dt

�
LetX puq�

t�0
,

and the element pdαuqeX P Aθ applied to x PM is�
dLpXqu�pxq � �pdαuqX	pxq � d

dt

�
LetX puqx�

t�0
� d

dt

�
upetX � xq�

t�0
. (A.9)

We denote by A8θ the space of differentiable vectors of the representation L.
If one particularises to Aθ � C8pRq (the manifold M being R itself), the

vector fields of R naturally act on Aθ. In particular, if u : R Ñ C and X P R
we have �

X�puq�prq � X�
r puq � d

dt

�
u
�
e�tXr��

t�0
� �

dLp�Xqu�prq,
so that

dLpXq � �X� (A.10)

holds on the space of differentiable vectors A8θ .
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Definition A.5.
A formal star product �G : C8pMqrrνss � C8pMqrrνss Ñ C8pMqrrνss is said
to be G-covariant if for all X, Y P G,rλX , λY s�G � 2νtλX , λY u (A.11)

where rλX , λY s�G :� λX �G λY � λY �G λX . In other words the start product
is G-covariant when the expected terms of higher order in the right hand side
are zero.

A crucial use of G-covariance will be done in proposition A.7 in order to
build a map ρν that fulfils the following proposition (instead of dL itself).

Proposition A.6.
In the setting of definition A.1, the map dL is a representation by derivation
of R on A8θ .

Proof. We will not pay attention on the domain Aθ. Its definition will come
later. First, we prove that dL : RÑ EndA8θ is a representation. Indeed,

dLprX,Y squ � d

dt

�
L�expp�trX,Y squ	

t�0
� d

dt

�rL�expp�tXq, L�expp�tY qsu	
t�0� �

dLpXq, dLpY q�u.
(A.12)

Next, LR-invariance of �θ yields�
L�exp�tXu� �θ �L�exp�tXv� � L�exp�tXpu �θ vq.

If we derive this equality with respect to t at t � 0, we find

dLpXqu �θ v � u �θ dLpXqv � dLpXqpu �θ vq.
A.1.2 Deformation of Iwasawa subgroups

The motivation in deforming (or quantizing) groups resides in the method of
deformation by group action (appendix A.4) which states that if one can deform
a group, one can write a formula for a deformed product on any manifold on
which the group acts.

Let first describe the next few steps in the construction of WKB quanti-
zations of groups. Let G be a semisimple Lie group with its Iwasawa decom-
position G � ANK. The group R � AN is solvable and can be seen as the
homogeneous space R � G{K. We consider the canonical multiplicative action
τ : G � R Ñ R which we restrict to τ : R � R Ñ R. We are interested in a
R-invariant quantization of R. Here is a summary of the notations that will be
used.
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• �M is the Moyal star product on Rn endowed with its canonical symplec-
tic form,

• ÆRθ is the product we are searching for. It has to be defined at least on
C8
c pRq and should be extended to C8pRq,

• AR � FunpR,Cq must contain C8
c pRq. The purpose is pAR, ÆRθ q to be an

associative algebra and AR to be invariant under the left regular repre-
sentation of R,

• Aν � C8pRqrrνss is an intermediary space which serves to guess ÆRθ and
perform formal manipulations with ρν and dL,

• �RM is the pull-back of Moyal to Aν . It serves to formal manipulations in
order to guess the twist that defines �Rν ,

• �Rν is the product on Aν . The problem of determining that product
is formal. When this problem is solved, we have to prove that in a
well chosen AR, taking �Rν Ñ ÆRθ yields a solution to the problem. As
previously noticed, in order to make sense, one has to apply dL on the
subspace A8

ν of differentiable vector of the regular left representation.
We will however not take care of this issue in the formal manipulations.

The main steps are the following:

1. In the case of a WKB product we show in proposition A.6 that dL is a
representation of R on A8

ν . Hence we will try to build a formal product
for which dL is a representation by derivation. From this point of view,
the manipulation with ρν is only a trick designed to guess a product
formula.

2. We suppose that the group R —the one that we are trying to quantize—
has a symplectic structure ω and we consider φ : R2n Ñ R, a Darboux
chart; i.e. ω � φ�Ω where Ω is the canonic symplectic form on R2n.

3. We suppose that the left action of R on itself is strongly hamiltonian
and we denote by λX the momentum maps. We suppose that the Moyal
product is G-covariant2.

4. We pose ρνpXq � 1
2ν

ad�R
M
pλXq. The R-covariance of �RM is used in order

to prove that ρν is a representation by derivations of R on pAν , �RM q.
5. If one can find an intertwining operator between dL and ρν (i.e. if they are

equivalent representations), we define �Rν as the pull-back of �RM by this
intertwining operator. In this case, we prove that dL is a representation
by derivations of the product �Rν .

2In fact, we only need the R-covariance.
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We try now to find a formal product �Rν on A8
ν such that dL is a represen-

tation by derivations. For this purpose we suppose R to accept a symplectic
structure ω and φ : R2n Ñ R to be a Darboux chart, i.e. ω � φ�Ω where
Ω denotes the canonical symplectic form on R2n. Then we bring the Moyal
product of R2n to R by the usual formulapu �RM vq � pu � φ �M v � φq � φ�1. (A.13)

We suppose that product to be G-covariant3:rλX , λY s�R
M
� 2νtλX , λY uR. (A.14)

Now we consider the left action of R on itself and we suppose that this is an
Hamiltonian action for the symplectic structure ω � φ�Ω with dual momentum
maps λX : RÑ C. We define, for each X P R, a linear map, ρνpXq : Aν Ñ Aν
by

ρν : RÑ EndAν
X ÞÑ 1

2ν
ad�R

M
pλXq (A.15)

Notice that the formal series of rλX , us�R
M

begins with order one, so the division
by ν make sense in the space of formal series. The main interest of ρν is to be
as we want dL to be. So it will be used to guess how to twist the product in
order to make dL work as ρν .

Proposition A.7.
The map ρν is a representation of R on Aν , and ρνpXq is a derivation ofpAν , �RM q for each X P R.

Proof. The proof that ρν is a representation is only to check that the relationrρνpXq, ρνpY qsf � ρνprX,Y sqf holds for any X , Y P R and f P Aν . Using the
G-covariance and the Jacobi identity,

ρνprX,Y sqf � 1

4ν2
ad�R

M
p2νλrX,Y sqf � 1

4ν2
ad�R

M
prλX , λY s�R

M
qf� 1

4ν2
rrλX , λY s�R

M
, f s�R

M� 1

4ν2
pad�R

M
λX � ad�R

M
λY � ad�R

M
λY � ad�R

M
λXqf� rρνpXq, ρνpY qsf. (A.16)

It remains to check that ρνpXqpu�RM vq � ρνpXqu�RM v�u�RM ρνpXqv for every

3Only the R-covariance will be actually used.
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X P R. This is once again just a computation.

ρνpXqu �RM v � u �RM ρνpXqv � 1

2ν
pλX �RM u� u �RM λXq �RM v� 1

2ν
u �RM pλX �RM v � v �RM λXq� 1

2ν
ad�R

M
λXpu �RM vq. (A.17)

Notice that the G-covariance of �RM was used to prove that ρν is a rep-
resentation. Now, if we could show that ρν � dL, then the answer to our
deformation problem would be Aθ � A8

ν and Æθ � �RM . But instead of that we
have ρν � dL� opνq because

ρνpXqu � 1

2ν
rλX , us�R

M
� 1

2ν
2νtλX , uu � opνq � X�puq � opνq� �dLpXqu� opνq (A.18)

where the notion of fundamental field X� is taken for the regular left rep-
resentation (which is Hamiltonian). That shows that ρν is something like a
deformation of dL. As a consequence, one has dLpXq � XλX , or

dLpxqu � XλX puq � tλX , uu (A.19)

(see subsection B.12.3).
Since ρν is not dL, the hope is to see if ρν and dL should be equivalent

representations. As next proposition shows, the fact to find an equivalence
between ρν and dL actually solves the problem to find a product for which dL
is a representation by derivation.

Proposition A.8.
Let T : Aν Ñ Aν be an intertwining operator between dL and ρν :

T ρνpXqT �1 � dLpXq. (A.20)

If we define the star product �Rν by

u �Rν v � TνpT �1
ν u �RM T �1

ν vq, (A.21)

dL becomes a derivation of �Rν .

Proof. If we develop the expression of dLpXqpu�RM vq, we find T ρνpXqpT �1u�RM
T �1vq, using the fact that ρν is a derivation of �RM , one easily finds dLpXqu�RM
v � u �Rν dLpXqv.
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A.2 Deformation of SLp2,Rq
Abstract

This section shows in some detail an instructive example of deforma-
tion of an Iwasawa subgroup: the Iwasawa subgroup of SLp2,Rq. In this
section we will use the parametrization (B.22) of SLp2,Rq, as well as the
notations G � SLp2,Rq and G � slp2,Rq. Here are the main steps that
will be performed:

1. The Iwasawa component R � AN � G{K provides a double cover-
ing onto O � AdpGqZ where Z is any element of K (which is one
dimensional). The adjoint orbit O being endowed with a canonical
symplectic form described in subsection B.12.4, we consider on R
the corresponding symplectic structure.

2. The map pa, lq ÞÑ AdpeaHelEqZ turns out to be a global Darboux
chart and induces the diffeomorphism

R � O � R2
.

Under these identifications, the adjoint action of R on O becomes
the simple multiplication of R in itself, which is strongly hamilto-
nian.

3. The Moyal product is slp2,Rq-covariant for the action of SLp2,Rq
on R2.

4. We explicitly build the intertwining operator between ρν and dL
and we write down a product (see proposition A.8).

5. A theorem is stated in which we list the properties of the so con-
structed product.

A.2.1 Actions and Symplectic structure

Here, in contrast with the case studied in B.12.4, we are working with adjoint
orbits (and not the coadjoint orbits), so the subalgebra to be studied is no morerO but

O � AdpGqZ,
and the symplectic form is not exactly (B.90), but

ωXpA�, B�q � BpX, rA,Bsq. (A.22)

The action of G on O is g �X � AdpgqX . The corresponding notion of funda-
mental field is given by

X�
φpa,lq � d

dt

�
Adpe�tXqφpa, lq�

t�0
.
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The Iwasawa theorem B.9 claims that G{K � AN and that we have global
diffeomorphism A ` N Ñ AN , pa, nq Ñ eaen; A Ñ A, a Ñ ea; N Ñ N ,
nÑ en. We define R � A`N and the global diffeomorphism

φ : A`N Ñ O
aH � lE ÞÑ AdpeaHelEqZ. (A.23)

That map can also be seen as

φ : R2 Ñ Opa, lq ÞÑ AdpeaHelEqZ. (A.24)

In this way, we identify A`N and R2 as two dimensional space.

Proposition A.9.
As homogeneous space, there is a double covering

ψ : G{K Ñ Orgs ÞÑ AdpgqZ. (A.25)

Proof. The map ψ is well defined and injective (up to the double covering)
because the stabilizer of K is K. The surjective condition is clear. The double
covering is expressed by the fact that ψprgsq � ψprg1sq if and only if g � �g1.

The symplectic 2-form ω on O induces a symplectic form

Ω � φ�ω
on A`N � R2.

Proposition A.10.
The 2-form φ�ω is constant and its value is

Ω :� φ�ω � �2BpF,Eqda^ dl � βda^ dl;

in other words, φ is a global Darboux chart for O.

Proof. We have to compute

Ωpa,lqpBa, Blq � ωφpa,lq�pdφqpa,lqBa, pdφqpa,lqBl�.
First, we show that dφpBaq � �H�

φ :

dφpa,lqBa � d

dt

�
φpa� t, lq�

t�0
� d

dt

�
Adpepa�tqHelEqZ�

t�0� d

dt

�
AdpetHeaHelEqZ�

t�0
� d

dt

�
AdpetHqφpa, lq�

t�0� �H�
φpa,lq.
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In the same way, we find dφpBlq � �
AdpeaHqE��

φ
:

dφpa,lqBl � d

dt

�
AdpeaHel�tEqZ�

t�0
� d

dt

�
AdpeaHetEe�aHeaHelEqZ�

t�0� d

dt

�
AdpeaHetEe�aHqφpa, lq�

t�0
� d

dt

�
AdpetAdpeaH qEqφpa, lq�

t�0� ��AdpeaHqE��
φpa,lq.

Using formula (A.22) for the symplectic form,

Ωpa,lqpBa, Blq � B
�
φpa, lq, r�H,�AdpeaHqEs�� B
�

AdpeaHqAdpelEqZ,AdpeaHqrH,Es�� 2B
�
Z,Adpe�lEqE�� 2BpZ,Eq. (A.26)

Defining β � �2BpE,F q we write it as

Ω � φ�ω � �2BpF,Eqda^ dl � βda^ dl. (A.27)

So, as symplectic manifold, pO, ωq is nothing but pR2, da ^ dlq, the diffeo-
morphism being φ. The symplectic structure Ω induces a Poisson structure P
given by equation (B.85). In the present case, it readspΩijq � β

�
0 1�1 0


 pP q � β�1

�
0 �1

1 0



(A.28)

and tf, gu � β�1pBlfBag � BafBlgq. (A.29)

The action of G on O can be turned into an action on R2 using the chart
φ. It is done by defining τ : G�R2 Ñ R2,

τ � φ�1 �Ad �φ, (A.30)

or τgpa, lq � φ�1
�

Adpgqφpa, lq�. The notion of fundamental field at x � pa, lq PR2 is thus given by

X�
x � d

dt

�
e�tX � x�

t�0
� d

dt

�
φ�1

�
Adpe�tXqφpa, lq��

t�0
, (A.31)

for which we will often use the path representation

X�
x ptq � φ�1

�
Adpe�tXqφpa, lq�.



A.2. DEFORMATION OF SLp2,Rq 81

From Ad-invariance of ω,

τ�Ω � τ�φ�ω � pφ � φ�1 �Ad �φq�ω � φ�pAdq�ω � φ�ω � Ω.

Thus the symplectic form is G-invariant:

τ�Ω � Ω, (A.32)

That implies in particular that τ satisfies theorem B.19.

Proposition A.11.
The action τ of G on the symplectic space pR2,Ωq is Hamiltonian and the dual
momentum maps λ1X : R2 Ñ R are given by (cf .B.20)

λ1Xpa, lq � �B�X,φpa, lq� (A.33)

for each X P G.

Proof. We have first to check the identity ipX�qΩ � ipX�qpφ�ωq � dλ1X . Let
us apply both sides on the vector A�x, with A P G and x � pa, lq P R2. On the
one hand

ipX�
x qΩxpA�xq � ωφpxq�dφxX�

x , dφxA
�
x

�
,

but

dφxX
�
x � d

dt

�
φpX�

x ptqq�
t�0

� d

dt

�
Adpe�tXqφpaH, lEq�

t�0
� �X�

φpa,lq.
(A.34)

The same being true for A,

ipX�
x qΩxpA�xq � ωφpxqpX�

φpxq, A�φpxqq � Bpφpxq, rX,Asq.
On the other hand,pdλ1X qxpA�xq � d

dt

�pλ1X � φ�1q�AdpetAqφpa, lq	�
t�0� d

dt

�
B
�
X,AdpetAqφpa, lq	�

t�0� B
� d
dt

�
AdpetAqφpxq�

t�0
, X

	
B is linear� B

�padAqφpxq, X	� �B�φpxq, padAqX�
B is Ad-invariant� Bpφpxq, rX,Asq.

(A.35)
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That proves that ipX�qΩ � dλ1X . The second part of the proof is to see that
condition (B.87b) holds. Using the fact that Xλ1

Y
� Y �, we findtλ1X , λ1Y upa, lq � �ΩpXλ1

X
, Xλ1

Y
q � �Ωpa,lqpX�, Y �q� �ωφpa,lqpX�, Y �q � �BprX,Y s, φpa, lqq� λ1rX,Y spa, lq

where the star refers to the action on O. Explicit computations of Poisson
bracket between λ1X ’s at page 83 will confirm that result.

We are now able to furnish explicit formulas for λ1H , λ1E and λ1F by virtue
of the latter proposition. The first computation is:

λ1Hpa, lq � �BpH,AdpelEqZq � �BpAdpe�lEqH,Zq� �BpH � r�lE,Hs � . . . , Zq � �BpH,Zq �Bpr�lE,Hs, Zq� �2lBpE,F q,
(A.36)

so
λ1Hpa, lq � �βl. (A.37)

Second,

λ1Epa, lq � �BpAdpe�aHqE,AdpelEqq � �e�2aBpAdpe�lEqE,Zq� �β
2
e�2a.

(A.38)

Then,

λ1Epa, lq � �β
2
e�2a. (A.39)

The last one is

λ1F pa, lq � �B�AdpelEqZ, e�aHF � � �e2aB
�
Z,Adpe�lEqF �� �e2aB

�
Z,F � lrE,F s � l2

2
rE, rE,F ss � . . .

�� �e2a

�
BpZ,F q � lBpZ,Hq � l2

2
BpZ, 2Eq�� �e2a

�
BpZ,F q � l2BpF,Eq�� �e2a
�� β

2
� l2

β

2

� � e2aβ

2
pl2 � 1q. (A.40)

Finally,

λ1F pa, lq � β

2
e2apl2 � 1q. (A.41)
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Using formula (B.86) for the Poisson bracket, one can check that the required
relations (B.87b) are satisfied:tλ1H , λ1Eu � 2λ1E (A.42a)tλ1H , λ1F u � �2λ1F (A.42b)tλ1E , λ1F u � λ1H . (A.42c)

This confirms the fact that our action of SLp2,Rq on AN is Hamiltonian.
Using the global diffeomorphism (A.23), and the map

j : AN Ñ O
r ÞÑ AdprqZ (A.43)

we identify
R � O � R2.

The action of R on itself induced from the adjoint action of R on O is

r � s � j�1
�
r � jpsq� � j�1

�
AdprsqZ� � rs.

It is the left multiplicative action required in definition A.1. The Lie group R
is endowed with the symplectic form

ωR � j�φ�1�Ω.

The notion of fundamental vector for the action of R on itself is given by

X�
r � d

dt

�
e�tX � r�

t�0
� d

dt

�
j�1

�
e�tX � jprq��

t�0
� dj�1X�

jprq, (A.44)

but we know that

e�tX � jprq � Adpe�tXrqZ � rφ � τpe�tXrq � φ�1sZ,
then

X�
r � dj�1 � dφX�

r�φ�1pZq.
If r � eaHelE , then r � φ�1pZq � pa, lq and

X�
r � pdj�1 � dφqX�pa,lq (A.45)

where the fundamental field of the right hand side is taken in the sense of the
action of R on R2.

The following proposition shows that the explicit form of λ and λ1 are the
same up to natural identifications.
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Proposition A.12.
The left multiplicative action of R on itself is Hamiltonian and the dual mo-
mentum maps are given by λX : RÑ C,

λX � λ1X � φ�1 � j. (A.46)

for each X P R.

Proof. Once again, the proof is just a verification of the two properties of a
momentum map. The first one is

ipX�
r qωRY � ωRr pdj�1dφX�pa,lq, Y q � Ωpφ�1�jqprq�X�pa,lq, dφ�1djrY

�� pλ1X � dφ�1 � djqY � dλXY.
(A.47)

For the second condition, we consider r � eaHelE andtλX , λY uprq � X�
r pλY q � pdj�1dφX�pa,lqqpλ1Y � φ�1 � jq� X�pa,lqpλ1Y q � λ1rX,Y spa, lq P C (A.48)

while
λrX,Y sprq � λ1rX,Y s � φ�1 � jprq � λ1rX,Y spa, lq.

A.2.2 Guessing the star product

The Moyal star product is invariant under the action ofR2 on itself Lxy � x�y
in the sense that if we pose pL�yfqpxq � fpx� yq it is clear thatpL�s f �M L�s gqpxq � exp

�ν
2
P ijpByi ^ Bzj q� fpy � sqgpz � sq|y�z�x� L�s pf �M gqpxq. (A.49)

We are however not interested by that action on R2. The action which we look
at is the one of SLp2, Rq.
Proposition A.13.
The product �M is slp2,Rq-invariant at order 0 and 1.

Proof. The invariance at order zero is given with some concise notations bypguqpgvqpxq � upgxqvpgxq � puvqpgxq,
The action τg of an element g P G satisfies τ�g Ω � Ω (equation (A.32)), so
theorem B.19 gives tu � τg, v � τgu � tu, vu � τg. Since Poisson bracket is the
first term of the Moyal product, at first order

τ�g pu �M vq � τ�g u �M τ�g v.
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Proposition A.14.
The product �M is slp2,Rq-covariant for the homomorphism given by proposi-
tion A.11 or equivalently by equations (A.37), (A.39), and (A.41).

Proof. The Moyal star product can be written as

u �M v �¸ νk

k!
Pkpu, vq

with Pkpu, vq � ΩIJBIuBJv where I and J are summed over k-uple of 0 and
1, including a sum over k itself (x0 � a, x1 � l). For a given I, there is only
one J such that ΩIJ � 0. There are

�
k
m

�
multi-indices I providing the termBI � Bm0 Bn1 with n�m � k. For each of them, ΩIJ � p�1qn. Therefore

Pkpu, vq � ķ

m�0

p�1qk�m� k
m


Bm0 Bn1 u Bn0 Bm1 v. (A.50)

For example,
P1pu, vq � �B1uB0v � B0uB1v � tu, vu.

If k is even, the expression (A.50) is symmetric with respect of u and v, so
that these terms will not contribute in the computation of the commutatorsru, vs�M . We are left withrλ1X , us�M � 2

8̧
k�0

ν2k�1p2k � 1q!P2k�1pλ1X , uq. (A.51)

First we compute rλ1H , us�M :

P2k�1pλ1H , uq � δk0p�B1λ
1
HB0u� B0λ

1
HB1uq � δk0tλ1, uu, (A.52)

thus rλ1H , us�M � 2νP1pλ1H , uq � 2νtλ1H , uu � 2νβBau. (A.53)

By the way, we point out the relation

ad�M λ1H � 2νβBa.
Now, we turn our attention to the commutator rλ1E , us�M :

P2k�1pλ1E , uq � � ķ

n�0

p�1qm�2k � 1

m


�
2k � 1

m


pBm0 Bn1λ1Eq pBn0 Bm1 uq� B2k�1
a

�� β

2
e�2a

�B2k�1
l u � β22ke�2aB2k�1

l u,

(A.54)
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thusrλ1E , us�M � 2

8̧
k�0

ν2k�1p2k � 1q!β22ke�2aB2k�1
l u � βe�2a sinhp2νBlqu, (A.55)

so that
ad�M λ1E � βe�2a sinhp2νBlq.

Last we check rλ1E , λ1F s�M � 2νtλ1E , λ1F u. When u � 0, the only non vanishing
term in the sum (A.55) is k � 0. Since B3

l λ
1
F � 0,rλ1E , λ1F s�M � 2νβe�2aBlλ1F ,

but

2νtλ1E , λ1F u � 2νpBaλ1EBlλ1F � Blλ1EBaλ1F q � 2νβe�2aBlλ1F . (A.56)

Before to go on, let us compute the operator ad�M λ1F in order to complete
our collection. We take once again the formula (A.50), with λ1F and u:

P2k�1pλ1F , uq � � 2k�1

m̧�0

p�1qm�2k � 1

m


Bma Bnl λ1F BnaBml u. (A.57)

It is clear that λ1F can be derived only two times with respect of l and as
much as we want with respect of a. Then possible n are n � 0, 1, 2, whose
corresponding m are 2k � 1, 2k, and 2k � 1. Some computations lead to

P2k�1pλ1F , uq � �kp2k � 1qβ22k�1e2aB2
aB2k�1
l u� p2k � 1qβ22klBaB2k

l u� β22kp1 � l2qe2aB2k�1
l u.

(A.58)

Replacing into the series (A.51), we findrλ1F , us�M � e2a
!¸ ν2k�1p2k � 1q!βp�kqp2k � 1q22k�1

2
B2
aB2k�1
l u�¸ ν2k�1p2k � 1q! p2k � 1q22k�1lBaB2k

l u

β
¸ ν2k�1p2k � 1q! 22k�1p1� l2qB2k�1

l u
)� �βe2aB2

a

8̧
k�1

p2νq2kp2kq! kνB2k�1
l� 2βνe2aBa � coshp2νBlq� βe2ap1� l2q sinhp2νBlq.
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Finally,

ad�M λ1F � �ν2βe2aB2
a � sinhp2νBlq� 2νβe2alBa � coshp2νBlq� e2ap1� l2q sinhp2νBlq. (A.59)

Corollary A.15.
The star product �RM on R defined for u, v P C8pRq bypu �RM vqprq � pu � T�1 �M v � T�1qT prq (A.60)

where T � φ�1 � j is covariant for the functions λ of proposition A.12.

Remark that from general theory of star products, the so-defined �R is a
formal star product on R.

Proof. From definition of �RM , on the one handpλX �RM λY qprq �X Ø Y � pλ1X �M λ1Y qT prq �X Ø Y � 2νtλ1X , λ1Y uR2T prq,
while on the other hand, ωR � T �Ω, so thattλ1X , λ1Y uR2 � T � tλ1X � T, λ1Y � T uR � tλX , λY uR.

All that makes the theory developed earlier, and in particular proposition
A.8, valid here. So we pose

ρν : RÑ End
�
C8pRqrrνss�

X ÞÑ 1

2ν
ad�R

M
pλXq; (A.61)

using the explicit expressions of ad�M pλ1Xq, we find

ρνpHq � βBa, ρνpEq � β

2ν
e�2a sinhp2νBlq. (A.62)

Using (A.19) with λH � �βl, it is clear that dLpHq � �βtl, uu � βBau.
Therefore

ρνpHq � dLpHq, (A.63)

but the requested identity ρνpEq � dLpEq will not hold. The problem is that
dLpXq � XλX is a vector field, while ρνpEq comes with (infinitely) multiple
derivatives, hence this is not a vector field. Conclusion: the operator T of
equation (A.20) must not act on the variable a.
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First we consider a partial Fourier transform F :pFuqpa, αq � ûpa, αq :� 1?
2π

»
e�iαlupa, lqdl, (A.64)

the inverse being given bypF�1ûqpa, lq � 1?
2π

»
eilαûpa, αqdα. (A.65)

It is clear that FρνpHqF�1 � ρνpHq, but FρνpEqF�1 � β
2ν
e�2a sinhp2iναq.

Indeed, if we define v̂pa, αq � sinhp2iναqûpa, αq,pρνpEqF�1ûqpa, lq � β

2ν
e�2a 1?

2π
sinhp2νBlq » eilαûpa, αqdα� β

2ν
e�2a 1?

2π

»
eilα sinhp2iανqûpa, αqdα� β

2ν
e�2apF�1v̂qpa, lq. (A.66)

This is nothing but the fact that the Fourier transform turns a derivation into
a multiplication.

As can be seen on an asymptotic development, the deformation ν parameter
is necessarily purely imaginary, then we can here pose ν � iθ with θ P R, so
that

FρνpEqF�1 � βi

2θ
e�2a sinhp2αθq. (A.67)

Using (A.19), we find
dLpEq � βe�2aBl. (A.68)

Comparing it with the expression of FρνpEqF�1, we see that (up to constant
factor) we have to act in such a way that sinhp2αθq is converted into a deriva-
tion. This is done by a Fourier transform. We pose ξ � sinhp2θαq and

f̃pa, ξq � 1?
2π

»
eiξpfpa, pqdp.

As usual, �Bαf � �iξf̃ .
This suggests us to consider the change of variable

φθpa, αq � pa, 1

2θ
sinhp2θαqq,

and finally,
Tθ :� F�1 � φ�θ � F , (A.69)

where φ�θ is defined by pφ�θ uqpa, αq � upa, 1
2θ

sinhp2θαqq. The result of our con-
struction is the following which proves that we are in the situation of proposi-
tion A.8.
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Theorem A.16.

Tθ � ρνpEq � T �1
θ � βe�2aBl � dLpEq.

Proof. Notice that pφ�θFuqpa, αq � ûpa, sinhp2θαqq, and then define v̂pa, αq �
ûpa, sinhp2θαqq; equation (A.67) ispFρνpEqF�1v̂qpa, αq � βi

2θ
e�2a sinhp2θαqv̂pa, αq.

Applying pφ�q�1 on the right hand side, we find βi
2θ
e�2a2θαûpa, αq. This allows

us to computepTθρνpEqT �1
θ qupa, lq � βie�2aF�1pαûqpa, lq� βie�2a 1?

2π

»
ûpa, αqp�iqBleilαdα� βe�2apBluqpa, lq.

A.2.3 Formula for the product

The fact the Tθ intertwines ρν and dL makes that the candidate to be a product
on the AN of SLp2,Rq can be computed using formula (A.21). Computations
are rather long and done in the articles [7] and [9] (see particularly point 4),
so we will not give them here. We will also not precise the functional space of
convergence for the resulting product.

In the parametrization pa, lq � �
ea eal

0 e�a
 ,
of R � AN the form da^ dl is a left-invariant measure, so the integral of the
function f : RÑ R on R is given by»

R

f � »R2

fpa, lqda dl.
Remark that da dl is the Liouville measure by proposition A.10. It is important
for definition A.1.

We consider a subset A � FunpRq, and we define the product ÆRθ on A bypa ÆR tbqpa0, l0q � »
R�RKR

θ

�pa0, l0q, pa1, l1q, pa2, l2q�
apa1, l1qbpa2, l2qda1dl1da2dl2.

(A.70)
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where
KA
θ pg0, g1, g2q � 1

θ2
ARpg0, g1, g2qeiθSRpg0,g1,g2q

with

ARpg0, g1, g2q � à
0,1,2

coshpa1 � a2q (A.71a)

SRpg0, g1, g2q � à
0,1,2

sinhp2pa0 � a1qql2. (A.71b)

Here, the symbol
À

0,1,2 stands for a cyclic sum over the indices 0, 1, 2.

Remark on (formal) star product

One can find a definition of an asymptotic development for oscillating integrals
in [20] under the form

Iλ � »
epi{λqSpxqφpxq �

ņ

λncn.

It can be shown that such a development used on (A.70) gives rise of a formal
star product: pa ÆR bqpgq � apgqbpgq � θ

2i
ta, bupgq � opθ2q. (A.72)

A.3 Extension lemma

Let psi,Ωiqi�1,2 be symplectic Lie algebras and pSi, ωiq the respective Lie
groups with left-invariant symplectic forms: pωiqg � pLgq�Ωi. We suppose
to know a homomorphism ρ : s1 Ñ Derps2q X sppΩ2q and a Darboux chart
φi : si Ñ Si for each of the two symplectic Lie groups. Our first purpose is to
build a Darboux chart on the split extension

s :� s1 `ρ s2.

Remark A.17. Most of the time we are in the inverse situation: we have an
algebra s which turn out to be a split extension s1 `ad s2 for which we have to
check that adps1q is a symplectic action of s1 on ps2,Ω2q. See the example of
section 3.2.

Proposition A.18.
In this setting, the map φ : s Ñ S,

φpX1, X2q � φ2pX2qφ1pX1q (A.73)

is a Darboux chart.
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Proof. An element X P Tφ�1pgqps1 ` s2q � s1 ` s2 is denoted by X � pX1, X2q
with Xi P si, and the symplectic form on s1 ` s2 is given by

Ω
�pA1, A2q, pB1, B2q� � Ω1pA1, B1q � Ω2pA2, B2q (A.74)

where we identify si and Tesi. Let A and B belongs to Tφ�1pgqps1 ` s2q. We
have to show that the quantity

ωg

�pdφqφ�1pgqA, pdφqφ�1pgqB	� ωe

�pdLg�1qgpdφqφ�1pgqA, pdLg�1qgpdφqφ�1pgqB	 (A.75)

does not depend on g.
The vector A is represented by a path Aptq � pA1ptq, A2ptqq with Aiptq P si.

In order to characterise that path, we want first to know precisely what is
Aip0q. Since A P Tφ�1pgqs, the path must fulfil φpA1p0q, A2p0qq � g, or

φ2pA2p0qqφ1pA1p0qq � g. (A.76)

We denote Aip0q � Gi P si and φipGiq � gi. The relation between g1 and g2 is
g2g1 � g. In particular, it is wrong to say “A1p0q � φ�1pgq, thus φ1pA1p0qq �
g”. This point being clear,pdφqφ�1pgqA � d

dt

�
φpAptqq�

t�0
� d

dt

�
φ2pA2ptqqφ1pA1ptqq�

t�0
. (A.77)

If one particularises to the case A P s2, that is A1ptq � cst � G1,pdφqφ�1pgqA � pdRg1
qg2
pdφ2qG2

A2. (A.78)

Since g � g1g2, we have Lg�1 � Lg�1

1

� Lg�1

2

, and the first argument of ωe
in equation (A.75) ispdLg�1

1

qg1
pdLg�1

2

qg2g1
pdRg1

qg2
pdφ2qG2

A2.

If we write that in terms of the derivative of the path A2ptq, what we get in
the derivative is

g�1
1 g�1

2 φ2pA2ptqqg1 � Adg�1

1

�
g�1

2 φ2pA2ptqq	. (A.79)

Since g�1
2 φ

�
A2p0q� � g�1

2 φ2pG2q � e, the derivative of that term ispdLg�1qgpdφqφ�1pgqA � Adg�1

1

�pdLg�1

2

qg2
pdφ2qG2

A
	

(A.80)

with some abuse between A P s and A2 P s2. Doing the same computation
with B P s1 (so that B2ptq � cst � G2), we findpdφqφ�1pgqB � d

dt

�
g2φ1pB1ptqq�

t�0
� pdLg2

qg1
pdφ1qG1

B1, (A.81)
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and what appears in ωe readspdLg�1qgpdLg2
qg1
pdφ1qG1

B � pdLg�1

1

qg1
pdφ1qG1

B. (A.82)

Finally, for A P s2 and B P s1,

ωg
�pdφqφ�1pgqA, pdφqφ�1pgqB�� ωe

�
Adg�1

1

�pdLg�1

2

qg2
pdφ2qG2

A
�
, pdLg�1

1

qg1
pdφ1qG1

B
	
.

(A.83)

The first argument belongs to T s2 (because g2 P s2) while the second belongs
to T s1. Hence definition (A.74) makes the right hand side vanishing.

If we want to compute equation (A.83) with A, B P s2,

ωe

�
Adg�1

1

�pdLg�1

2

qg2
pdφ2qG2

A
�
,Adg�1

1

�pdLg�1

2

qg2
pdφ2qG2

B
�	� Ωp. . .q � Ω1p. . .qloomoon�0

�Ω2p. . .q� �
Ad�

g
�1

1

Ω2

	�pdLg�1

2

qg2
pdφ2qG2

A, . . . B
	 (A.84)

At this point, notice that Ad�g1
Ω2 � Ω2. Indeed the exponential exp: s1 Ñ S1

being surjective , there exists a X1 P s1 such that Adpg1q � eadpX1q. Now,
adpX1q P sppΩ2q by assumption, so that Adpg1q P SPpΩ2q. The previous ex-
pression becomes

Ω2ppdLg�1

2

qg2
pdφ2qG2

A, . . . Bq � pω2qg2
ppdφ2qg2

A, . . . Bq� pφ�2ω2qG2
pA,Bq� Ω2pA,Bq. (A.85)

The last line is the fact that φ2 is a Darboux chart: φ�2ω2 � Ω2. The case with
A, B P s1 yields to compute

ωe

�pdLg�1

1

qg1
pdφ1qG1

A, pdLg�1

1

qg1
pdφ1qG1

B
	
.

It is done by the same way as the previous cases.

A direct computation shows the following extension lemma.

Lemma A.19 (Extension lemma).
Let Ki P FunpS3

i q be a left-invariant three point kernel on Si (i � 1, 2). Assume
that K2 b 1 P FunpS3q is invariant under conjugation by elements of S1. Then
K :� K1 bK2 P FunpS3q is left-invariant (under S).
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Proof. An element of S has the form g1g2 with gi P Si, the multiplication
being given by pg1g2qpa1a2q � pg1a1qpg2a2q. Using this rule, the definition of
the tensor product, and the left-invariance of both Ki,�

Lg1g2
pK1 bK2q�pa1a2, b1b2, c1c2q� pK1 bK2q�pg1g2qpa1a2q, pg1g2qpb1b2q, pg1, g2qpc1c2q�� K1pg1a1, g1b1, g1c1qK2pg2a2, g2b2, g2c2q� K1pa1, b1, c1qK2pa2, b2, c2q� pK1 bK2qpa1a2, b1b2, c1c2q.

This lemma shows that if one has kernels on S1 and S2 satisfying the
above hypotheses, their tensor product provides a kernel for an associative
left-invariant kernel on S � S1 bρ S2. Proposition A.18 allows us to hope that
the product on S will satisfy the same kind of symplectic compatibility as the
products on Si; in particular when the latter were constructed using Darboux
chart in the same way as the product described in section A.2.

A.4 Deformation by group action

The procedure of deformation by group action is described in [13]. Let G be a
Lie group. We suppose to know a subset AG of FunpG,Cq such that

1. AG is invariant under the left regular representation of G on itself,

2. AG is provided with a G-invariant product ÆG such that pAG, ÆGq is an
associative algebra. The G-invariance means that �a, b P AG,pL�gaq ÆG pL�g bq � L�g pa ÆG bq.

Notice that we do not impose any regularity condition on this product.
The reason is that the deformation by group action is a formal procedure which
allows to guess a product on a manifold. The “true” work to prove convergences
and invariances has to be done on the level of the deformed manifold.

Now, let X be a manifold endowed with a right action τ : G � X Ñ X

of G. For u P FunpXq, x P X and g P G, we consider αxpuq P FunpGq and
αgpuq P FunpXq defined by

αxpuqpgq � αgpuqpxq � upτg�1pxqq, (A.86)

and the following functional space on X :

AX � tu P FunpXq|αxpuq P AG �x P Xu.
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For example, the AX corresponding to AG � FunpGq is the whole FunpXq. For
u, v P AX , we define ÆX : AX �AX Ñ FunpXqpu ÆX vqpxq � �

αxpuq ÆG αxpvq�peq (A.87)

where e is the identity of G.

Theorem A.20.
The product (A.87) obtained by action of the group G on the manifold X fulfils
the following properties:

1. The operation αx intertwines the products ÆX and ÆG:

αxpu ÆX vq � pαxuq ÆG pαxvq.
2. AX is stable under ÆX,

3. pAX , ÆXq is an associative algebra.

Proof. First remark that ατg�1pxqu � L�gαxu becausepατg�1 pxquqphq � u
�
τpghq�1pxq� � pαxuqpghq � �

L�gαxu�phq,
It follows that

αxpu ÆX vqpgq � pu ÆX vqpτg�1 pxqq � pατg�1 pxqu ÆG ατg�1 pxqvqpeq� �
L�g pαxu ÆG αxvq� peq � pαxu ÆG αxvqpgq. (A.88)

The first point is proved.
Using the first point, we see that ατg�1 pxqu belongs to AG because αxu P GG

and AG is stable under Lg. So we have the second point. For the third one,rpu ÆX vq ÆX wspxq � �
αxpu ÆX vq ÆG αxpwq�peq� �pαxu ÆG αxvq ÆG αxpwq�peq.

The conclusion follows from associativity of ÆG.

Let us summarize what was done up to now. When G acts on X , and when
we have a “good” product on AG � FunpGq, we are able to build an associative
product on AX � FunpXq. The space AX is defined by A and the action. So a
deformation of a group gives rise to a deformation of any manifold on which the
group acts. This is why we call it an “universal” deformation. That universal
construction is the motivation to deform groups.

Lemma A.21.
A function u belongs to AX if and only if there exists one y such that αypuq P
AG in each g-orbit in X.
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Proof. The necessary condition is direct because, when u P AX , the function
αxpuq belongs to AG for every x. For the sufficient condition, suppose αypuq P
AG, then αg�ypuq � L�

g�1pαyuq P AG for all g because AG is left-invariant. If it
holds for a y in each G-orbit, then αxu P AG for all x P X .

The content of this lemma is that if one wants to check if a given function
u belongs to AX , one only has to check is αyu P AG for one y in each G-orbit.

The functions αxpuq are not “gentle” functions, even when u is. Let us give
two examples of pathology that can occur in αxpuq without to be present in u.
Firstly, if the action is the identity, the support of αxpuq is the whole G which
can be non compact. So, even when u is compactly supported, there are no
guarantee with respect to the support of αxpuq.

Secondly, the function αxpuq is of course bounded; but the derivatives are
not specially such. Indeed, in order to fix ideas, suppose that the group G is a
two parameter group and that the manifold X is a two dimensional manifold.
In this case, one can write

fpa, lq � αxpuqpa, lq � u
�
z1pa, lq, z2pa, lq� (A.89)

where x is a parameter in the functions zi. Depending on the action, the
function z can be very odd. In particular, the derivativespBafqpa, lq � pB1uqpz1, z2qpBaz1qpa, lq � pB2uqpz1, z2qpBaz2qpa, lq
in which Bazi can be divergent. Even worse, the degree of the divergence
can increase with the degree of the derivation. Two examples of such a hill
behaviour are given in section 3.1.

A.5 One dimensional split extensions of Heisen-

berg algebras

A.5.1 Introduction

The one dimensional extensions of Heisenberg algebras are classified by triplespX, µ, dq. The quantization in the case pid, 0, µq reveals to be a particular case
of the one studied in [9], while quantization of other extensions can be found
using symmetries of the kernel. Here we are reporting results of [17] and most
of proofs (in particular the trick of subsection A.5.6 which allows to extend
the known product to every one dimensional split extensions) are due to Y.
Voglaire. It is to be published in his future PhD thesis.

The kernel of the quantization of [9] will be denoted by K. Then we will
give a way to twist K in order to obtain a kernel K 1 on any extension of the
form pX, 0, 2q. Quantizations of other extensions can be obtained by composing
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with Lie group isomorphisms. The kernel for an arbitrary extension is denoted
by K0pX, µ, dq, or simply K0 when there are no possible ambiguity.

When we will deal with the anti de Sitter situation, our starting point will
be this K0 that we will have to adapt to another symplectic form that δE�
invoking lemma A.29.

A.5.2 General definitions

Let Hn � V `RE be the Heisenberg algebra of dimension 2n� 1, with a
natural symplectic structure defined from the Heisenberg algebra structure:rv, ws � Ωpv, wqE
for all v, w P V . Now we consider a one dimensional algebra A � RA generated
by an element A, and we build the split extension of Hn by A:

Fpρq � A`ρ Hn (A.90)

where the split homomorphism is an action by derivation ρ : A Ñ DerpHnq.
The so obtained algebra is what we call a one dimensional extension of
Heisenberg algebra. Let us study the possibilities for ρpAq. From linearity,
its general form is

ρpAqpv, zq � ρpAqpv, 0q � ρpAqp0, zq � pXv, µpvqq � pzv0, 2dzq
with X P EndpV q, µ P V �, v0 P V and d P R. Since RE � rHn,Hns, the fact
that ρpAq is a derivation of Hn, implies that v0 � 0 because

ρpAqRE � ρpAqrHn,Hns � rρpAqHn,Hns � rHn, ρpAqHns � RE. (A.91)

Thus we have
ρpAqpv, zq � pXv, µpvq � 2dzq. (A.92)

From commutation relations in Hn, we easily findrpv, zq, pv1, z1qs � rv, v1s � Ωpv, v1qE.
Applying ρpAq to this equality, and using the fact that this is a derivation, we
find

ΩpX, v1qE � Ωpv,X1qE � ρpAqΩpv, v1qE � 2dΩpv, v1qE
which can be rewritten as

Ω
�pX� d1qv, v1�� Ω

�
v, pX� d1qv1� � 0. (A.93)
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In conclusion, the endomorphism ρpAq is given by a triple pX, µ, 2dq with pX�
d1q P sppV,Ωq, µ P V � and d P R. Using this result, we write the general
commutator on R � A`ρ Hn under the form�pa, v, zq, pa1, v1, z1q� � �

0,Xpav1 � a1vq, µpav1 � a1vq � 2dpaz1 � a1zq �Ωpv, v1q�
(A.94)

where we adopted the notationpa, v, zq � aA� v � zE. (A.95)

A.5.3 Symplectic structure

The following proposition gives a symplectic structure on F .

Proposition A.22.
The algebra pX, µ, dq endowed with

ΩF � �δE� � E�pr., .sq (A.96)

where the star denotes the Chevalley cocycle defined by (B.91) is symplectic if
and only if d � 0.

Proof. It is evident that ΩF is closed because it is exact. For non-degeneracy,
we compute

ΩF � E�r., .s � aµpv1q � a1µpvq � 2dpaz1 � a1zq � Ωpv, v1q� �� 0 µ 2d�µt Ω 0�2d 0 0

�

whose determinant is det ΩF � �4d2 det Ω which is non vanishing if and only
if d � 0.

This symplectic algebra is denoted by FΩpX, µ, dq, or simply F when there
are no possible confusions.

Since we are only interested in symplectic algebras, we suppose d � 0 and
we look at extensions of type pdX, dµ, 2dq with X�d1 P sppV,Ωq. The bracket
is given by�pa, v, zq, pa1, v1, z1q� � �

0, dXpa1v�a1vq, dµpav1�a1vq�2dpaz1�a1zq�Ωpv, v1q�.
(A.97)
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A.5.4 Isomorphisms

The extension obtained by the derivation D � pX, µ, dq is a priori not the same
as the one obtained by D1 � pX1, µ1, d1q. Two extensions are isomorphic when
there exists a linear bĳection dL : FD Ñ FD1 such that4

dL
�rX,Y sD1� � �

dLpXq, dLpY q�
D1 (A.98a)pdLq�ΩD

1 � ΩD. (A.98b)

We find the following isomorphisms:

• FpdX, dµ, 2dq � FpX, µ, dq by

dLpa, v, zq � pda, v, zq, (A.99a)

• FpX, µ, 2q � FpX, 0, 2q by

dLpa, v, zq � pa, v � au, zq, (A.99b)

where u is the vector of V satisfying ipuqΩ � µ,

• FpX, 0, 2q � FpX1, 0, 2q by

dLpa, v, zq � pa,Mpvq, zq (A.99c)

where M P SPpV,Ωq fulfills MXM�1 � X1 or, equivalently,

MpX� 1qM�1 � X1 � 1.
The third isomorphism only gives the equivalence between X � 1 and X1 � 1
when they belongs to the same orbit of the adjoint action of SPpV,Ωq. In
particular, there are no isomorphisms between the identity and anything else.

A.5.5 Reminder about a previous deformation

Before going on with the construction of a deformation of one dimensional split
extensions of Heisenberg algebras, we have to recall a result on deformation in
SUp1, nq. The product on the extension of Heisenberg algebra will be nothing
else than a transport of this one.

The article [9] provides a formal universal deformation formula for the ac-
tions of the Iwasawa component R0 :� A0N0 of SUp1, nq under an oscillatory
integral form. It turns out (see [15]) that this deformation formula is in fact
non-formal for proper actions on topological spaces.

4the reason why we write dL instead of L comes from the fact that we will be interested
in the corresponding group isomorphism later.
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Here is the precise result. The Iwasawa decomposition of SUp1, nq induces
the identification R0 � SUp1, nq{Upnq. The group R0 is endowed with a (family
of) left-invariant symplectic structure(s)5 ω. If we denote by R0 � A0 ` N0

the Lie algebra of R0, the map

φ0 : R0 Ñ R0pa, nq ÞÑ exppaq exppnq (A.100)

reveals to be a global Darboux chart for pR0, ωq. The nilpotent component
appears to accept a decomposition N0 � V � RZ in which the Lie bracket
reads rpx, zq , px1, z1qs � ΩV px, x1qZ;

the full Iwasawa component is now parametrized by R0 � tpa, v, zq | , a, z PR;x P V u. The interest of this situation resides in the fact that the algebra
R0 turns out to be a one dimensional split extension of an Heisenberg algebra;
namely,

R0 � Fp1, 0, 2q.
The deformation result is the following.

Theorem A.23.
For all non-zero θ P R, there exists a Fréchet function space Eθ satisfying the
inclusions C8

c pR0q � Eθ � C8pR0q, such that, defining for all u, v P C8
c pR0qpu Æθ vqpa0, x0, z0q :� 1

θdim R0

»
R0�R0

coshp2pa1 � a2qqrcoshpa2 � a0q coshpa0 � a1q sdim R0�2� exp
�2i

θ
ϕpr1, r2, r3q	� upa1, x1, z1q vpa2, x2, z2q da dx dz;

(A.101)

where

ϕpr1, r2, r3q �SV � coshpa1 � a2qx0, coshpa2 � a0qx1, coshpa0 � a1qx2

�� à
0,1,2

sinhp2pa0 � a1qqz2

with SV px0, x1, x2q :� ΩV px0, x1q � ΩV px1, x2q � ΩV px2, x0q is the phase for
the Weyl product on C8

c pV q and
À

0,1,2 stands for cyclic summation, one has:

1. uÆθ v is smooth and the map C8
c pR0q�C8

c pR0q Ñ C8pR0q extends to an
associative product on Eθ. The pair pEθ, Æθq is a (pre-CÆ) Fréchet algebra.

5This is done using the hermitian symmetric structure, cf proposition 1.1 in [9].
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2. In coordinates pa, x, zq the group multiplication law reads

Lpa,x,zqpa1, x1, z1q � �
a� a1, e�a1x� x1, e�2a1z � z1 � 1

2
ΩV px, x1qe�a1
 .

The phase and amplitude occurring in formula (A.101) are both invariant
under the left action L : R0 �R0 Ñ R0.

3. Formula (A.101) admits a formal asymptotic expansion of the form:

u Æθ v � uv � θ

2i
tu, vu �Opθ2q;

where t , u denotes the symplectic Poisson bracket on C8pR0q associated
with ω. The full series yields an associative formal star product on pR0, ωq
denoted by Æ̃θ.

The setting and 1. and 2. may be found in [9], while 3. is a straightforward
adaptation to R0 of [15].

This theorem among with the isomorphisms given in A.5.4 only provide
a product on extensions of type pd1, 0, 2dq. But we saw that the extensionspX, 0, 2dq with X � 1 are different. Hence the generalization of this result to
other extensions is not straightforward. We address now this question.

A.5.6 Extensions with non trivial X

The group F p1, 0, 2q is provided with a kernel K : F �F �F Ñ C by theorem
A.23. The symplectic group SPpV,Ωq acts on F by

Φ: SPpV,Ωq � F Ñ FpM, Ipa, v, zqq ÞÑ ΦM pIpa, v, zqq :� Ipa,Mpvq, zq (A.102)

where
I : F Ñ Fpa, nq ÞÑ eaAen

(A.103)

is the Iwasawa coordinate on F .

Proposition A.24.
The kernel K is invariant under this action: Φ�

MK � K.

Proof. We are looking on the kernel in expression (A.101). The amplitude of K,
i.e. all what lies outside the exponential, and the cyclic sum in the phase only
depend on the ai’s. So ΦM does not act on them. As far as S0 is concerned,
up to coefficients which only depend on the ai’s, it is a sum of elements of the
form ΩpMvi,Mvjq � Ωpvi, vjq.
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Let X be a matrix such that X̄ � X � 1 P sppV,Ωq and F 1 � F 1pX, 0, 2q.
We consider S, the one dimensional subalgebra of sppV,Ωq generated by X̄ and
we define

G � S `ρ F (A.104)

with
ρpX̄qpa, v, zq � p0, X̄v, 0q.

We denote by G and S the corresponding groups. We have in particular F �
G{S. An element of G has the formpkX̄, a, v, zq � kX̄� aA� v � zE. (A.105)

Proposition A.25.
The group F 1 is a subgroup of G.

Proof. We will prove that F 1 is isomorphic to a subalgebra of G, namely, the
subalgebra L � S `ρ F ,

L � RpA� X̄q `σ pV �REq
where σ is the splitting homomorphism (A.92) of F , which in the present case
reads σpA� X̄qp0, v, zq � p0, Xv, 2zq. In other words, the algebra L is made of
elements of the form (A.105) with k � a. The isomorphism is

φ : LÑ F 1pX, 0, 2q
apA� X̄q � v � zE ÞÑ aA� v � zE.

(A.106)

Indeed, using formula (A.97) with d � 1 and µ � 0, we find�
φ
�
apA� X̄q � v � zE

�
, φ
�
a1pA� X̄q � v1 � z1E��pX,0,2q� �
aA� v � zE, a1A, v1 � z1E�� Xpav1 � a1vq � �

2paz1 � a1zq � Ωpv, v1q�E� φ
�
Xpav1 � a1vq, 2paz1 � a1z � Ωpv, v1qq�� φ
�
apA� X̄q � v � zE, a1pA� X̄q � v1 � z1E�.

From now on, we identify F 1 with L by the isomorphism φ which will no
longer be explicitly written. Image of F 1 in G by the isomorphism are elements
of the form

g1 � eapA�X̄qev�zE .
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Since the elements eA and eX commute in G, we can decompose an element
φ�1pg1q as

eaX̄loomoonPS eaAev�zEloooomoooonPF .

The element apA� X̄q � v � zE seen in S `ρ F will be denoted by pa, v, zq as
well pa, v, zq � φ�1paA� v � zEq.
We consider the following coordinate on F 1:

J : F 1 Ñ F 1pa, v, zq ÞÑ eapA�X̄qev�zE . (A.107)

Proposition A.26.
The group F 1 is diffeomorphic to the homogeneous space F � G{S.

Proof. We will prove that F 1 acts simply transitively on G{S. Let us look at

g1 � Jpa, v, zq � eapA�X̄qlooomooon
g1
S

ev�zEloomoon
g1
F

. (A.108)

Noticing that eaX̄res � reaX̄s � res we find

g1res � eaX̄eaAev�zEe�aX̄eaX̄res � AdpeaX̄q�eaAev�zE�res.
In G � S`ρF , by definition of ρ, we have AdpeaX̄q�eaAev�zE� � eaAee

aX̄v�zE ,

thus g1res � eaAee
aX̄v�zEres � rIpa, eaX̄v, zqs. So, in order to get the elementrIpa, v, zqs P G{S, we have to act on res with the element g1 � Jpa, e�aX̄v, zq.

All that proves that the map

H : F 1 Ñ G{Spa, v, zq ÞÑ �
Ipa, eaX̄v, zq� (A.109)

is a diffeomorphism.

The work done up to now provides a diffeomorphism

ϕ : F 1 Ñ F

ϕ
�
Jpa, v, zq� � Ipa, eaX̄v, zq (A.110)

which has suitable properties listed in the proposition below.

Proposition A.27.
This map ϕ : F 1 Ñ F has the following properties:
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1. if g1 � Jpa, v, zq � g1Sg1F in the sense of decomposition (A.108),

ϕ � Lg1 � Adpg1Sq � Lg1F � ϕ � ΦeaX̄ � Lg1
F
� ϕ � Φg1

S
� Lg1

F
� ϕ, (A.111)

2. the differential fulfils

dpϕ � Jqp0,0,0q � dIp0,0,0q, (A.112)

3. if ω is the left-invariant symplectic form on F and ω1 the one on F 1, we
have

ϕ�ω � ω1,
in other words, ϕ is a symplectomorphism.

Proof. The first point is a computation:

ϕ
�
Lg1
S
g1
F
pgsgEq� � ϕ

�
g1SgS Adpg�1

S qpg1F qgF �� Adpg1SgSq�Adpg�1
S qpg1F qgF �� Adpg1Sq�g1F AdpgSqpgF q�� �

Adpg1Sq � Lg1F ��ϕpgSgF q�.
When g1 � g1Sg1F � Jpa, v, zq, we have g1S � exppaXq and g1F � Ipa, v, zq, so
the result is given by

Adpg1Sqpg1F q � eAdpaXqIpa, v, zq � Ipa, eaXv, zq � ΦeaXIpa, v, zq.
That concludes the proof of the first point. For the second statement, we havepϕ � Jqpa, v, zq � ΦeaXIpa, v, zq, so

dpϕ � Jqp0,0,0qpYa, Yv, Yzq � d

dt

�
ΦetYa IptYa, tYv, tYzq�

t�0� d

dt

�
I
�
tYa, e

tYaXtYv, tYz
��
t�0� dIp0,0,0qpYa, Yv, Yzq. (A.113)

For the third point, we denote by e and e1 the neutral of F and F 1. On the
one hand, pϕ�ωqg1 � ωϕpg1q � dϕg1 � ωe � d�Lϕpg1q�1 � ϕ�

g1 ;
on the other hand, ω1g1 � ω1e1 � d�Lpg1q�1qg1 . Hence, in order to have ϕ�ω � ω1,
it is necessary that

ω1e1 � dJp0,0,0q � ωe � d�Lϕpg1q�1 � ϕ � Lg1�e1 � dJp0,0,0q.
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But, for g1 � g1Sg1F , we have

Lϕpg1q�1 � ϕ � Lg1pgq � ϕpg1q�1ϕpg1gq� ϕpg1q�1 Adpg1Sq�g1Fϕpgq�� Ad
�pg1F q�1

�
Adpg1Sq�g1Fϕpgq�� �

Adpg1Sq � ϕ�pgq.
The first property yields

d
�
Lϕpg1q�1 � ϕ � J�p0,0,0q � Adpg1Sq � dIp0,0,0q � dpΦeaX qe � dIp0,0,0q.

Since ωe is invariant under ΦeaX , it remains to be proved that ω1e1 � dJp0,0,0q �
ωe � dIp0,0,0q. This is true because, in these coordinates, both sides applied on
vectors pYa, Yv, Yzq and pZa, Zv, Zzq give

2pYaZz � ZaYzq � ΩpYv, Zvq,
so ϕ is a symplectomorphism.

Now, if K is the kernel on F , we define the kernel on F 1 by

K 1 : F 1 � F 1 � F 1 Ñ C
K 1 � ϕ�K. (A.114)

Theorem A.28.
The kernel K 1 is

• left-invariant under F 1,
• associative on F 1.

Proof. For left-invariance, let g1 � Jpa, v, zq. We have

L�g1K 1 � �
ϕ � LJpa,v,zq��K � �

ΦeaX � Lg1
F
� ϕ��K � ϕ�L�g1

F
Φ�
eaXK � K 1,

because of left-invariance of K under F and its invariance under Φ. Associa-
tivity can be checked in much the same way as in lemma A.2.

Let F � F p1, 0, 2q and F 1 � F 1pX, 0, 2q. By proposition A.24, the kernel
K on F is invariant under SPpV,Ωq, i.e. Φ�

MK � K for all M P SPpV,Ωq. The
action of SPpV,Ωq on F is given by

ΦM
�
Ipa, v, zq� � Ipa,Mv, zq.
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Define the map Φ1
M : F 1 Ñ F 1,

Φ1
M

�
Jpa, v, zq� � J

�
a, e�aX̄MeaX̄v, z

�
(A.115)

which fulfils
ΦM � ϕ � ϕ � Φ1

M .

Thus, using the SPpV,Ωq-invariance of K, we have

φ1M�K 1 � pϕ � φ1M q�K � pφM � φq�K � ϕ�K � K 1.
This proves that K 1 is also invariant under SPpV,Ωq too.

A.5.7 Jump from one kernel to another

We have a kernel for the extensions FδE�pd1, 0, 2dq and FδE� pX, 0, 2q. We can
consider the isomorphism L : F pX, 0, 2q Ñ F pdX, dµ, 2dq which is the lift of

dL : FpX, 0, 2q Ñ FpdX, dµ, 2dqpa, v, zq ÞÑ pda, v � au, zq. (A.116)

If K 1 is a kernel on FδE� pdX, dµ, 2dq, then

K0 � L�K 1
is a kernel on FδE�pX, 0, 2q.

An action Φ0pMq : F pdX, dµ, 2dq Ñ F pdX, dµ, 2dq is given by

Φ0pMq � L�1 � Φ1pMq � L (A.117)

where Φ1pMq : F pX, 0, 2q Ñ F pX, 0, 2q is given by equation (A.115). By lemma
A.2, the kernel K0 is left-invariant under the action of F and invariant under
the following action of SPpV,Ωq:

Φ0pMq�K0 � K0.

Lemma A.29.
Let δη� and δξ� be two exact forms on F such that ξ� and η� belong to the
same coadjoint orbit: there exists a g P F such that

ξ� �Adpgq � η�. (A.118)

A solution of the problem to find an automorphism σ : F Ñ F such that

δη�σphq�dσhXh, dσhYh
� � δξ�h pXh, Yhq (A.119)

for all h P F and Xh, Yh P ThF is given by σ � Adpg�1q.
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Proof. Transported to the identity, the condition (A.119) becomes:

δη��dLσphq�1dσhXh,dLσphq�1dσhYh
� !� δξ��dLh�1Xh, dLh�1Yh

�� δη��Adpg�1qdLh�1Xh,Adpg�1qdLh�1Yh
�
.

If Xh � d
dt
Xhptq��t�0

, we are searching for a σ such that

d

dt

�
σphq�1σ

�
Xhptq��

t�0
� d

dt

�
Adpg�1q�h�1Xhptq��

t�0
.

Since σ is a group isomorphism, σphq�1 � σph�1q and the constraint on σ

becomes
σ
�
h�1Xhptq� � g�1

�
h�1Xhptq�g.

A solution is therefore
σ � Adpg�1q. (A.120)



Appendix B

Toolbox

B.1 Connectedness of usual groups and anti de

Sitter spaces

B.1.1 General results

The following is a general result about Lie groups:

Lemma B.1.
If G is a Lie group and G0 is its identity component, the connected components
of G are lateral classes of G0. More specifically, if x P G1, then G1 � xG0 �
G0x.

An other general result is lemma 2.4 of [25] states that

Lemma B.2.
Connectedness of some usual groups:

• The groups SUpp, qq, SU�p2nq, SO�p2nq, ppn,Rq, and SPpp, qq are all
connected.

• The group SOpp, qq (0   p   p�q) has exactly two connected components.

We are not going to prove this lemma here. Instead, we give some detail on
the geometric nature of the two connected components of SOpp, qq; a physical
discussion in the case of SOp1, 3q can be found in the reference [33]. What is
proved in [25] is that SOpp, qq is homeomorphic to the topological product

SOpp, qq � SOpp, qq X SUpp� qq �Rd � SOpp, qq X SOpp� qq �Rd
107
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for some d P N. Hence an element of SOpp, qq reads�
A 0

0 B


� v

where v P Rd, A P Oppq, B P Opqq are such that detAdetB � 1. The v

part corresponds to boost while A and B correspond to pure temporal and
pure spatial rotations. An element of Opnq has always determinant equals
to �1. Therefore one can decompose the rotation part as pdetA � detB �
1q b pdetA � detB � �1q. Both parts are connected.

Hence the first connected component contains 1 while the second one con-
tains the element that simultaneously changes the sign of one spacial and one
temporal direction.

B.1.2 The quotient for anti de Sitter

Homogeneous space considerations (see section B.9) will naturally lead us to
define the anti de Sitter space as the quotient G{H � SOp2, l� 1q{ SOp1, l� 1q
while the black hole definition (section 1.2) needs to consider Iwasawa decom-
positions of G. So we face the problem that the Iwasawa theorem B.9 only
works with connected groups. In order to prevent any problems of this type,
we prove now that, if G0 and H0 denote the identity component of SOp2, l� 1q
and SOp1, l � 1q respectively, then G{H � G0{H0.

The groups that are considered here have only two connected components
G0 and G1. We can chose i1 P G1 XH such that i21 � 1. Using lemma B.1, it
easy to prove that

• G0G0 � G0,

• G0G1 � G1,

• G1G1 � G0.

For the last one, take g and g1 in G1. Then consider g0 and g10 in G0 such that
g � g0i1 and g1 � g10i1. If g0ptq and g10ptq are path from 1 to g0 and g10, then
the path g0ptqi1g10ptqi1 is a path from 1 to gg1.
Proposition B.3.
The map

ψ : G{H Ñ G0{H0rgs ÞÑ g0

(B.1)

where we define g0 � g when g P G0 or g0 � gi1 when g P G1 is a diffeo-
morphism. The classes are rgs � tgh | h P Hu and g � tgh0 | h0 P H0u.
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Proof. First we prove that ψ is well defined. For that we suppose that rgs � rg1s.
There are three cases:

1. The elements g and g1 both belong to G0. In this case, g1 � gh0 with
h0 P H0 and gh � g.

2. The element g belongs to G0 while g1 belongs to G1. In this case, g1 � gh

with h � h0i1 and h0 P H0. Then ψrgs � g and ψrg1s � pgh0i1q0 �
gh0i1i1 � gh0 � g.

3. The case with g and g1 in G1 is similar.

The fact that the map ψ is surjective is clear. For injectivity, let ψrgs �
ψrg1s, i.e. there exists a h0 in H0 such that g10 � g0h0. Thus we have g1ik1 �
gil1h0 with k, l � 0, 1 following the cases. Then g1 � gil1h0i

k
1 in which il1h0i

k
1

belongs to H , so that rg1s � rgs.
B.2 Iwasawa decomposition of Lie groups

In this section, we show the main steps of the Iwasawa decomposition for a
semisimple Lie group. We will by the way fix certain notations. For proofs, the
reader will see [28] VI.4 and [24] III,§ 3,4 and VI,§ 3. In the whole section, G
denotes a semisimple group, and g its real Lie algebra. The two main examples
that are widely used during the thesis are SLp2,Rq and SOp2, nq.
B.2.1 Cartan decomposition

Definition B.4.
An involutive automorphism θ on a real semi simple Lie algebra g for which
the form Bθ,

BθpX,Y q :� �BpX, θY q (B.2)

(B is the Killing form on g) is positive definite is a Cartan involution.

Proposition B.5.
There exists a Cartan involution for every real semisimple Lie algebra.

See [24], theorem 4.1. Since θ2 � id, the eigenvalues of a Cartan involution
are �1, and we can define the Cartan decomposition g

g � k` p (B.3)

into �1-eigenspaces of θ in such a way that θ � p� idq|p ` id |k. These
eigenspaces are subject to the following commutation relations:rk, ks � k, rk, ps � p, rp, ps � k. (B.4)
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The dimension of of maximal abelian subalgebra of p is the rank of g. One can
prove that it does not depend on the choices (Cartan involution and maximal
abelian subalgebra). Let a be one of such maximal abelian subalgebras.

Lemma B.6.
The set of operators adpaq is an abelian algebra and the elements are self-
adjoint.

B.2.2 Root space decomposition

From the lemma, the operators adpHq with H P a are simultaneously diag-
onalisable. There exists a basis tXiu of g and linear maps λi : a Ñ R such
that

adpHqXi � λipHqXi.

For any λ P a�, we define

gλ � tX P g|padHqX � λpHqX,�H P au. (B.5)

Elements 0 � λ P a� such that gλ � 0 are called restricted roots of g. The
set of restricted roots is denoted by Σ, and have the important property to
span (among with a itself) the whole space:

g � g0 `λPΣ gλ, (B.6)

see [24] theorem 4.2 for a proof. This decomposition is called the restricted
root space decomposition. Other properties of the root spaces are listed in
the following proposition.

Proposition B.7.
The spaces gλi satisfy also:

1. rgλ, gµs � gλ�µ,

2. θgλ � g�λ; in particular, when λ belongs to Σ, �λ belongs to Σ too,

3. g0 � a`Zkpaq orthogonally.

B.2.3 Iwasawa decomposition

Definition B.8.
Let V be a vector space. A positivity notion (see [28], page 154) is the data
of a subset V � of V such that

1. for any nonzero v P V , v P V � xor �v P V �,

2. for any v, w P V � and any µ P R�, the elements v � w and µv are
positive.
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A positive element of V is an element of V �. When v is positive, we note
v ¡ 0. Let us consider a notion of positivity on a� and denote by Σ� the set
of positive roots. We define

n :� `λPΣ�gλ. (B.7)

The Iwasawa decomposition is given by the following theorem ([28], theorem
5.12):

Theorem B.9.
Let G be a linear connected semisimple group and A � exp a, N � exp n where
a and n are the previously defined algebras. Then A, N and AN are simply
connected subgroups of G and the multiplication map

φ : A�N �K Ñ Gpa, n, kq ÞÑ ank
(B.8)

is a global diffeomorphism. In particular, the Lie algebra g decomposes as vector
space direct sum

g � a` n` k. (B.9)

The group AN is a solvable subgroup of G which is called the Iwasawa group,
or Iwasawa component of G.

Notice that A, N and K are unique up to isomorphism. Their matricial
representation of course depend on choices.

B.3 Introduction to homogeneous spaces

Most of the material of this section can be found in a more general framework
in the references [24, 30, 31, 34].

B.3.1 Fundamental and invariant fields

Let G be a Lie group with Lie algebra g. For each element of g, there are two
distinguished vector fields on G, the left-invariant and the right-invariant
one:

X̃g � d

dt

�
getX

�
t�0

Xr g � d

dt

�
etXg

�
t�0

(B.10)

dLhX̃g � X̃hg dRhXr g � Xr gh. (B.11)

When G is a Lie group with an action on the manifold M denoted by

τ : G�M ÑMpg, xq ÞÑ τgpxq, (B.12)
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we define the fundamental vector field associated with X P g on the point
x PM by

X�
x � d

dt

�
τe�tX pxq�

t�0
. (B.13)

An usual case is the one of a Lie group acting on itself for which we have

X�
g � d

dt

�
e�tXg�

t�0
. (B.14)

B.3.2 Homogeneous spaces

An homogeneous space is a differentiable manifold which posses a transitive
diffeomorphism group. An important class of homogeneous spaces are quotients
M � G{H of a Lie group G by a closed subgroup H . In this case, we use the
classes at right: rgs � tgh | h P Hu
and the action at left:

τgrg1s � rgg1s.
The canonic projection is π : G Ñ M and we denote ϑ � res. We will only
deal with this kind of homogeneous spaces. The Lie algebras of G and H are
denoted by g and h respectively.

One know that (almost) every homogeneous space is of this kind in the
following way. Let M be a homogeneous space and ϑ, a point of M . We
consider G, a group which acts transitively on M (in particular, Gϑ �M) and
H , the subgroup of G which fixes ϑ. Then, one proves that the map rgs ÞÑ gϑ

is a homogeneous space isomorphism between M and G{H .
One can prove that kerpdπeq � h, and from the very definition of the objects,

one has
dπg � dLg � dτg � dπe. (B.15)

For sake of simplicity, we will use the notation µg � τg � π.
The homogeneous space G{H is endowed with its natural topology which

is defined by the requirement that the projection π is continuous and open. We
refer to [24] for the properties of that topology.

Definition B.10.
The homogeneous space M � G{H is reductive is there exists a subspace q of
g such that

g � q` h rh, qs � q.

Proposition B.11.
In an reductive homogeneous space, the restriction of the projection dπe : q Ñ
TϑM is an isomorphism.
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Proof. The map dπe : g � q ` h Ñ TϑM is of course surjective; then, since h

is the kernel, dπe : q Ñ TϑM must be surjective too. Now, if we have dπeX �
dπeY for Y , X P q, the difference pX � Y q must belongs to the kernel of dπe
which is nothing but h. This situation is impossible because g � h ` q is a
direct sum.

We can generalize this proposition by considering the space qg � dLgq.
Using equality (B.15), the map dπg � dLg : q Ñ TrgsM is an isomorphism.
Since, by definition, the map dLg�1 : qg Ñ q is an isomorphism, we conclude
that

Corollary B.12.
The restriction dπg : qg Ñ TrgsM is a vector space isomorphism.

B.3.3 Killing induced product

Since the Killing form B is an AdH -invariant product on q, we can define

BgpX,Y q � BepdLg�1X, dLg�1Y q (B.16)

which descent (see [27] for properties) to a homogeneous metric on TrgsM :

BrgspdπX, dπY q � BgpprX, prY q (B.17)

where pr : TgGÑ dLgq is the canonical projection. An useful property of that
projection is prpdLgXq � dLgXQ when X � XQ �XH . Using that property,
we can write the product under the more manageable form

BrgspdµgX, dµgY q � BepprX, prY q
for all X , Y P g.

Although equation (B.14) looks like (B.13), we find a major difference here:
the norm of q�i rgs is not a constant. One should expect that it was a constant
because (B.13) expresses a left translation while the Killing form is invariant
under left translations. But the metric (B.17) is a composition of the Killing
form with a projection. Let us study this case in details in computing the
product of two vectors of the form

X�rgs � dπ
d

dt

�
e�tXg�

t�0
,
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with X P q:

BrgspX�, Y �q � Bg
�

pr
d

dt

�
e�tXg�

t�0
, pr

d

dt

�
e�tY g�

t�0

�� Bg
�
dLg pr Adpg�1qX, dLg pr Adpg�1qY �� Be

��
Adpg�1qX�

q
,
�

Adpg�1qY �
q

	� Be

�
Adpg�1qXq,Adpg�1qYq

	� BepX,Y q
where the symbol � has to be understood as “not equal in general” because
equality holds of course for certain particular vectors such as zero.

B.4 Toolbox for SLp2,Rq
B.4.1 Iwasawa decomposition

Let G � SLp2,Rq the group of 2� 2 matrices with unit determinant. The Lie
algebra g � slp2,Rq is the algebra of matrices with vanishing trace:

g � tX P EndpR2q | TrpXq � 0u� "�
x y

z �x
 with x, y, z P R* . (B.18)

The following elements will be intensively used:

H � �
1 0

0 �1



, E � �

0 1

0 0



, F � �

0 0

1 0



, T � �

0 1�1 0



where T � E�F has been introduced for later convenience. The commutators
are rH,Es � 2E rT,Hs � �2T (B.19a)rH,F s � �2F rT,Es � H (B.19b)rE,F s � H rT, F s � H. (B.19c)

Notice that the sets tH,E, F u, tH,E, F u and tH,E � F, T u are basis. A
Cartan involution is given by θpXq � �Xt, and the corresponding Cartan
decomposition is

k � SpantT u
p � SpantH,E � F u
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Up to some choices, the Iwasawa decomposition of the group SLp2,Rq is
given by the exponentiation of a, n and k

a � SpantHu n � SpantEu k � SpantT u, (B.20)

so that

A � �
ea 0

0 e�a
 N � �
1 l

0 1



K � �

cos k sin k� sin k cos k



. (B.21)

A common parametrization of AN by R2 is provided bypa, lq � �
ea lea

0 e�a
 . (B.22)

One immediately has the following formula for the left action of AN on itself:

Lpa,lqpa1, l1q � �
ea�a1 ea�a1 l1 � ea�a1 l

0 e�a�a1 
 � pa� a1, l1 � e�2a1 lq.
In this setting, the inverse is given by pa, lq�1 � p�a,�le2aq.
B.4.2 Killing form

The Killing form BpX,Y q � TrpadX � adY q takes the following values:

BpT,Hq � 0 BpH,Hq � 8 (B.23a)

BpT,Eq � �4 BpE,Eq � 0 (B.23b)

BpH,Eq � 0 BpT, T q � �4. (B.23c)

Expressed in the basis tH,E, F u, the matrix of the Killing form reads

B � ��8

4

4

�
 (B.24)

while, in the basis tH,E � F, T u, we find

B � ��8

8 �8

�
. (B.25)

The latter is the reason of the name of the vector T : the sign of its norm is
different, so that T is candidate to be a time-like direction.
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B.4.3 Abstract root space setting

Looking on the table (B.19) from an abstract point of view, we see that E
and F are eigenvectors of adpHq with eigenvalues 2 and �2. So a � g0 � RH ;
g2 � RE; and g�2 � RF . Using a more abstract notation, the table of SLp2,Rq
becomes rA0, A2s � 2A2 (B.26a)rA0, A�2s � �2A�2 (B.26b)rA2, A�2s � A0. (B.26c)

B.4.4 Isomorphism

As pointed out in the chapter II, §6 of [29], the map (seen as a conjugation in
SLp2,Cq)

ψ : SUp1, 1q Ñ SLp2,Rq
U ÞÑ AUA�1

(B.27)

with A � �
1 i

i 1



is an isomorphism between SLp2,Rq and SUp1, 1q.

B.5 Root spaces for sop2, 1q
The algebra sop2, 1q is made up from 3 � 3 matrices such that Xtη � ηX � 0

with vanishing trace. If we choice η � diagp�,�,�q, we find matrices of the
form

sop2, 1q ;

�
a ut

u 0



where a is an antisymmetric 2 � 2 matrix and u is any 1� 2 matrix. We find
the Cartan decomposition

K;

�
sop2q

0



, P ;

�� 0 0 u1

0 0 u2

u1 u2 0

�
.
If one chooses

J � ��0 0 1

0

1

�

as generator for the abelian subalgebra of P , one finds

V1 � �� 0 1 0�1 0 1

0 1 0

�
, V�1 � �� 0 1 0�1 0 �1

0 �1 0

�
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as eigenvectors for adpJq with eigenvalues 1 and �1. The root space decompo-
sition commutator table of sop2, 1q is thus given byrV0, V1s � V1 (B.28a)rV0, V�1s � �V�1 (B.28b)rV1, V�1s � �2V0. (B.28c)

Notice that the map φpA0q � 2V0, φpA2q � V1, φpA�2q � �V�1 provides an
isomorphism between this table and the one of slp2,Rq, equations (B.26). This
fact assures a Lie algebra isomorphism slp2,Rq � sop2, 1q. We actually have a
stronger result:

Proposition B.13.
The group SLp2,Rq is a double-covering of the identity component SO0p1, 2q.
B.6 Iwasawa decomposition for SOp1, nq
We saw in the section B.9 that the quotient SOp2, nq{ SOp1, nq has a particular
importance. Hence, we will work out the Iwasawa decompositions of these
groups imposing certain compatibility conditions. We already build the Cartan
involution θ in such a way that rσ, θs � 0.

Now we show that θ descent to a Cartan involution on H . It is clear that
the restriction of θ is an involutive automorphism of H . Lemma B.17 assures
us that the restriction of the Killing form of G to H is the Killing form of H ,
so that the condition of positivity of Bθ holds on H as well as on G. Last, θ
leaves H invariant. Indeed suppose that θXH � X 1

H � XQ P H ` Q. Then
σθXH � h1 � q and θσh � h1 � q; since rθ, σs � 0, we have q � 0.

All that proves that we can use the same Cartan involution on G as well as
on H . Since θ � id|K ` p�idq|P , it is clear that

KH � K XH, PH � P XH (B.29)

is the Cartan decomposition of H. We can write explicit matrices as

KH � sopnq ;

���0 0 � � �
0 0 � � �
...

... B

�Æ
, (B.30)

where B is skew-symmetric, and

PH ;

���0 0 � � �
0 0 ut

... u 0

�Æ
. (B.31)
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One remark that there are no two-dimensional subalgebra of PH. So AH re-
duces to the choice of any element J1 P PH. A positivity notion is easy to find:
the form ω P AH� such that ωpJ1q � 1 is positive while �ω is negative. We
choose

J1 � ���� 0

0 0 0 1

0

1

�ÆÆ
.
The computation of NH � tX P H | padJ1qX � Xu yields the following :

NH ;

������������
���� 0 0

a 0

0 a 0 �a
0 0 a 0

�ÆÆ
 ����� � � 0 � � �� v Ñ� � � 0 � � �� v Ñ�ÆÆ
���� ... Ò ... Ò
0 v 0 �v
... Ó ... Ó �ÆÆ
 0

�ÆÆÆÆÆÆÆÆÆÆ
. (B.32)

Finally, we consider the algebra RH � AH `NH.

B.7 Iwasawa decomposition for SOp2, nq
As seen in the general construction and in previous examples, the Iwasawa
decomposition of a group or an algebra depends on several choices. We will
study two out of them in the case of SOp2, nq and see that some “compatibil-
ity conditions” with the decomposition of SOp1, nq and the symmetric space
structure of AdS (see section B.9) fix most of choices.

The Lie algebra G � sop2, nq is the set 
X PMp2�nq�p2�nq such that Xtη � ηX � 0 and TrX � 0

(
(B.33)

where η is the diagonal metric η � diagp�,�,�, . . . ,�q. An element of sop2, nq
can be written as X � �

a ut

v B



with the matrices a P M2�2, u P Mn�2,

v PMn�2, and B PMn�n. The conditions in (B.33) give: a � �at, u � v, and
B � �Bt. Hence, a general matrix of sop2, nq is given by

X � �
a ut

u B



(B.34)

where a,B are skew-symmetric.
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B.7.1 Cartan decomposition

The Cartan decomposition of sop2, nq associated with the Cartan involution
θpXq � �Xt is

K;

�
sop2q

sopnq
 , P ;

�
0 ut

u 0



. (B.35)

Elements of SOp2q are represented by�
cosµ sinµ� sinµ cosµ



.

A common abuse of notation in the text will be to identify the angle µ with
the element of SOp2q itself. In the same spirit, when we speak about a matrix
of A P SOp2q, we mean a matrix whose upper left corner is A and the rest is
the unit matrix. For example, for AdS3, the matrix �1 P SOp2q is�����1 0

0 �1

1

1

�ÆÆ
.
Remark that K, the compact part of G is made up from “true” rotations

while P contains boosts. This remark allows us to guess a right choice of
maximal abelian subalgebra in P . Indeed elements of A must be boosts and the
fact that there are only two time-like directions restrictsA to a two dimensional
algebra. Up to reparametrization, it is thus generated by tBx�xBt and uBy�yBt.
Hence the following choice seems to be logical:

J1 � ���� 0

0 0 0 1

0

1

�ÆÆ
P H, J2 � q1 � ����0 0 1 0

0

1

0

�ÆÆ
P Q. (B.36)

B.7.2 Maximal abelian subalgebra

The generators of A that we choose are the following linear combination of J1

and J2:
Hp � E13 �E31 � p�1qppE24 �E42q. (B.37)

B.7.3 Nilpotent part

We search the eigenvectors and eigenvalues of adpHpq under the form E ��
A B

C D



with A P M4�4, B P Mpn�2q�4, C P M4�pn�2q, D P Mpn�2q�pn�2q.
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Remark that, thanks to (B.35), the matrix C is completely determined by B:#
Ci1 � B1i, Ci2 � B2i,

Ci3 � �B3i, Ci4 � �B4i.
(B.38)

The equation to be solved ispadHpqE � �rNp, As NpB�CNp 0



!� λpE, (B.39)

with the notation λp � λpHpq.
Search for two non zero eigenvalues

By “two non zero eigenvalues”, we mean a λ P A� such that λ1 � 0 and λ2 � 0.
We immediately find D � 0.

The next step is to determine B by the condition NpB � λpB. We change
the range of the indices. Now, a, b : 1 Ñ 4, and i, j : 5 Ñ n � 2 and a few
computation give

°
aN

ca
p Bai � λpB

ci (with sum over a). Taking successively
c � 1, 2, 3, 4 and taking into account λp � 0, we find:

B3i � λpB
1i (B.40a)p�1qpB4i � λpB
2i (B.40b)

λp � �1. (B.40c)

We can check that the equations obtained by �CNp � λpC are exactly the one
that we can find directly using (B.38) and (B.40).

Now, we determine A by the condition rNp, As � λpA. We know that A
and Np are 4�4 matrices. Again, we redefine the range of the indices: a � 1, 2

and i � 3, 4. Symmetry properties of A are Aai � Aia, Aij � �Aji and
Aab � �Aba, so that

A � A12pE12 �E21q �AaipEai �Eiaq �A34pE34 �E43q
Using equation (B.37), a quite tedious (but direct) computation give the fol-
lowing for rNp, As:���� 0 A23 � p�1qpA14 0 A34 � p�1qpA12�A23 � p�1qpA14 0 A12 � p�1qpA34 0

0 A12 � p�1qpA34 0 A14 � p�1qpA23

A34 � p�1qpA12 0 A14 � p�1qpA23 0

�ÆÆ

(B.41)

which has to be equated to λpA. We immediately have A13 � A24 � A31 �
A42 � 0. The others conditions are:

λpA
12 �A23 � p�1qpA14 (B.42a)

λpA
14 �A34 � p�1qpA12 (B.42b)
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Since we are in the case λp � 0, using the fact that λp � �1, we easily find
A � 0. Now, we define λ�� P A� by

λ��pH1q � 1 λ��pH2q � 1,

λ��pH1q � 1 λ��pH2q � �1,

λ��pH1q � �1 λ��pH2q � 1,

λ��pH1q � �1 λ��pH2q � �1.

(B.43)

Root spaces are (with i : 5 Ñ n� 2):

λ�� ; Vi � E3i �E1i �Ei1 �Ei3,

λ�� ; Wi � E4i �E2i �Ei4 �Ei2,

λ�� ; Xi � E3i �E1i �Ei1 �Ei3,

λ�� ; Yi � E4i �E2i �Ei4 �Ei2.

(B.44)

Search for eigenvalues with one zero

We denote by λpa, bq the element of A� defined by λpx1, x2qpHiq � xi. Equa-
tions (B.41) and (B.42) with for example a � 0 and b � 0 give λ2 � �2. Serious
computation give:

λp0,�2q ; F � ���� 0 1 0 1�1 0 �1 0

0 �1 0 �1

1 0 1 0

�ÆÆ
, λp2, 0q ; N � ���� 0 1 0 1�1 0 1 0

0 1 0 1

1 0 �1 0

�ÆÆ

(B.45a)

λp0, 2q ; M � ���� 0 1 0 �1�1 0 1 0

0 1 0 �1�1 0 1 0

�ÆÆ
, λp�2, 0q ; L � ���� 0 1 0 �1�1 0 �1 0

0 �1 0 1�1 0 �1 0

�ÆÆ
.
(B.45b)

In these expressions, we only wrote the upper left part of the matrices which
are zero everywhere else.

Two vanishing eigenvalues

We now search for a matrix E of sop2, nq such that padHpqE � 0 for p � 1, 2.
Taking a look at (B.39), we see that D has no more constraints (apart the
usual symmetries). The equation (B.41) gives us A12 � A23 � A14 � A34 � 0,
but A13, A24,A31,A42 are free. Therefore we can write:

Gλp0,0q � txpE13 �E31q � ypE42 �E24q ��
0 0

0 D


u. (B.46)
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Remark that Gλp0,0q X P is spanned by matrices of the form����0 0 x 0

0 0 0 y

x 0 0 0

0 y 0 0

�ÆÆ
,
so that Gλp0,0q X P � A. This is a simple consequence of the very definition of
A as maximal abelian subalgebra of P .

Choice of positivity

We are now able to write down the component N . We just have to “select”
some Gλpa,bq with a notion of positivity. Our choice is:

N � tVi,Wi,M,Nu, (B.47)

with i, j : 5 Ñ n � 2. A basis of K is given by Krs � Ers � Esr , and
Ka � E12 �E21 with r, s : 3 Ñ n� 2.

Let us summarize the result obtained. The Iwasawa decomposition of
SOp2, nq is given by

A � tH1, H2u (B.48a)

N � tVi,Wj ,M,Nu (B.48b)

K � t�a 0

0 B


u. (B.48c)

with i, j : 5 Ñ n � 2, a P M2�2, B P Mn�n skew-symmetric, and Hp �
E13 �E31 � p�1qppE24 � E42q.

The non-zero commutators in A`N are :rVi,Wjs � δijM rWi, N s � �2Vi (B.49a)rH1, Vis � Vi rH2, Vis � Vi (B.49b)rH1, N s � 2N rH2,M s � 2M (B.49c)rH1,Wis � �Wi rH2,Wis �Wi. (B.49d)

B.7.4 Second Iwasawa decomposition for SOp2, nq
We know the�1 eigenspaces decompositions G σ� H`Q θ� K`P with rσ, θs � 0,
and the Iwasawa decomposition AH `NH `KH of H.

For compatibility and simplicity purposes, we want the Iwasawa decompo-
sitions G � A ` N ` K of G in such a way that AH � A and NH � N . We
denote by A, N , K, AH , NH and KH the analytic connected subgroups of G
whose Lie algebras are A, N , K, AH, NH, and KH respectively.
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For the A-part, we just perform a change of basis

J1 � 1

2
pH2 �H1q (B.50a)

J2 � 1

2
pH1 �H2q (B.50b)

in order to have J1 P P XH and J2 P P XQ. The involution σ has a simpler
expression in this basis. If α P A�, the notation σ�α means f � α, and Gα
denotes the root space associated with the form α.

Lemma B.14.
The involutions σ and θ act on the root spaces by

σGϕ � Gσ�ϕ, θGϕ � G�ϕ (B.51)

for all ϕ P A�,

Proof. Let H P A and X P Gϕ; by definition: rH,Xs � ϕpHqX . We have

ϕpHqσX � σrH,Xs � rσH, σXs � ϕpσHqσX.
We conclude that σX P Gσ�ϕ. For the second equality, we take X P Gϕ andrH, θXs � θrθH,Xs � θ

�
ϕpθHqX� � �ϕpHqθpXq.

Proposition B.15.
The involution σ changes the sign of the J�2 -part of the root spaces:

σGpx,yq � Gpx,�yq
where px, yq denote the coordinates of a root in the basis tJ�1 , J�2 u of A.

Proof. Since σ is an involutive automorphism, it satisfies rσX, Y s � σrX,σY s.
So when X P Gpx,yq, we have padpJ1qqpσXq � xσX and adpJ2qpσXq � �yσX .

It is also clear that σ�α � 0 implies αpJ2q � 0. Indeed, pσ�αqpJ2q �
αp�J2q � �αpJ2q, because J2 P Q.

We turn now our attention to the Iwasawa decomposition. As before we are

searching for matrices under the form E � �
A B

C D



with dimensions 4�pn�2q.

The condition which determines the root spaces readspad JiqE � �rji, As jiB�Cji 0



!� λi

�
A B

C D



. (B.52)
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The computations are rather the same as the ones of the first time. The
result is

Gp0,0q ;

������ x 0

0 y

x 0

0 y

D

�ÆÆÆÆ
, (B.53)

where D PMpn�2q�pn�2q is skew-symmetric. Notice that all but the D-part of
this space is spanned by q1 and J1, so the Q-component of that matrix is a
multiple of q1. Other root spaces are given by

Gp1,0q ; Wi � E2i �E4i �Ei2 �Ei4 P H, (B.54a)

Gp�1,0q ; Yi � �E2i �E4i �Ei2 �Ei4, (B.54b)

Gp0,1q ; Vi � E1i �E3i �Ei1 �Ei3, (B.54c)

Gp0,�1q ; Xi � �E1i �E3i �Ei1 �Ei3 (B.54d)

with1 i : 5 Ñ n� 2. For example,

V5 � ������ 1

0

1

0

1 0 �1 0 0

�ÆÆÆÆ
, W5 � ������ 0

1

0

1

0 1 0 �1 0

�ÆÆÆÆ
 (B.55)

Gp1,1q ; M � ���� 0 1 0 �1�1 0 1 0

0 1 0 �1�1 0 1 0

�ÆÆ
, Gp1,�1q ; L � ���� 0 1 0 �1�1 0 �1 0

0 �1 0 1�1 0 �1 0

�ÆÆ
,
(B.56)

Gp�1,1q ; N � ���� 0 1 0 1�1 0 1 0

0 1 0 1

1 0 �1 0

�ÆÆ
, Gp�1,�1q ; F � ���� 0 1 0 1�1 0 �1 0

0 �1 0 �1

1 0 1 0

�ÆÆ
.
(B.57)

These are the same spaces as the previous ones. The subtlety is that we will
choice an other notion of positivity, so that the space N will be different.

Let us recall the aim of our new decomposition: we want to have RH � R.
For this purpose, the equation (B.32) gives us a constraint on the choice of the

1Let us remember that we are dealing with SOp2, nq and that AdSl is a quotient of
SOp2, l � 1q, so in the case of AdSl the index j runs from 5 to l� 1. The first anti de Sitter
space which contains such root spaces is AdS4. More generally, remark that the table (B.59)
of sop2, nq gives the feeling that if something works with AdS4, it will work for AdSl¥4.
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1�1

1�1

b

b

b

b

ld

ldld

ldld

A�
H

Figure B.1: The root spaces

positivity notion on A�. First we must have Gp0,1q � N . The the upper left
4 � 4 corner of NH is spanned by Gp1,1q � Gp1,�1q. We complete our choice of
N with Gp1,0q. The underlying notion of positivity is that the element αpa, bq
is positive in A� when pa ¡ 0q _ pa � 0^ b ¡ 0q.

The difference between decomposition and the previous one is the replace-
ment of N by L P Gp1,�1q. Now

N � tWi, Vj ,M,Lu (B.58a)

A � tJ1, J2u, (B.58b)

with the commutator tablerVi,Wjs � δijM rVj , Ls � 2Wj (B.59a)rJ1,Wjs �Wj rJ2, Vis � Vi (B.59b)rJ1, Ls � L rJ2, Ls � �L (B.59c)rJ1,M s �M rJ2,M s �M. (B.59d)

It is important to note that Wi, J1 P H and J2 P Q. The following change of
basis in A reveals to be useful in some circumstances:

H1 � J1 � J2 H2 � J1 � J2 (B.60a)

which leads to the tablerVi,Wjs � δijM rVj , Ls � 2Wj (B.61a)rH1, Vis � �Vi rH2, Vis � Vi (B.61b)rH1,Wis �Wi rH2,Wis �Wi (B.61c)rH1, Ls � 2L rH2,M s � 2M. (B.61d)
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B.8 Group realization of low dimensional anti

de Sitter spaces

B.8.1 Two dimensional anti de Sitter

Using notations and conventions of section B.4, the set AdpGqH is a subset of
slp2,Rq made of elements of norm 8. One can show by brute force computation
or using the commutation relations that

AdpexKT exNEqH � �� sinp2xKqxN � cosp2xKq�H� �� cosp2xKqxN � sinp2xKq�pE � F q� xNT,

which is a, following the Killing form (B.25), general element of norm 8 in
slp2,Rq. Thus as sets, AdS2 is AdpKNqH . Since A is the stabilizer of H for
the adjoint action of G on H and G � ANK � KNA, we also have

AdS2 � G{A � AdpKNqH � AdpGqH.
That provides isomorphisms

φ : r0, πr�RÑ AdS2pxK , xBq ÞÑ AdpexKT exNEqH, (B.62)

or
φ : Cyl Ñ AdS2pθ, hq ÞÑ Adpe θ2T ehEqH. (B.63)

where Cyl is the usual cylinder in R3.

B.8.2 Three dimensional anti de Sitter

The space AdS3 is the hyperboloid

u2 � t2 � x2 � y2 � 1 (B.64)

embedded in R2,2. There exists a bĳection between R2,2 and the two by two
real matrices given by

v � ����utx
y

�ÆÆ
 ÞÑ gpvq � �
u� x y � t

y � t u� x



.

As far as norm is concerned, we have }v} � det gpvq. Among these matrices,
the ones of SLp2,Rq are given by the condition det g � 1, which is precisely
the equation of the hyperboloid in R4. That shows that AdS3 � SLp2,Rq.
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B.9 Symmetric space structure on anti de Sit-

ter

The l-dimensional anti de Sitter space AdSl can be described as set of pointspu, t, x1, . . . , xl�1q P R2,l�1 such that u2 � t2 � x2
1 � . . . � x2

l�1 � 1. The
next few pages are devoted to describe the homogeneous and symmetric space
structures on AdSl induced by the transitive an isometric action of SOp2, l�1q.
We suppose that the groups SOp2, l � 1q and SOp1, l � 1q are parametrized in
such a way that the second, seen as subgroup of the first one, leaves unchanged
the vector p1, 0, . . . , 0q. In this case, proposition 4.3 of chapter II in [24] provides
the homogeneous space isomorphism

SOp2, l � 1q{ SOp1, l� 1q Ñ AdSlrgs ÞÑ g ����1

0
...

�Æ
 (B.65)

where the dot denotes the usual “matrix times vector” action of the representa-
tive g P rgs in the defining representation of SOp2, l�1q onR2,l�1. As far as no-
tations are concerned, the classes are taken from the right: rgs � tgh | h P Hu;
in particular the class of the identity e is denoted by ϑ; the groups SOp2, l� 1q
and SOp1, l�1q are denoted by G and H respectively and their Lie algebras by
G and H. Following proposition B.3, we can in fact only consider the identity
components of G and H .

Proposition B.16.
The homogeneous space AdSl is reductive.

The proof relies on the following lemma and the fact that SOp2, nq is
semisimple.

Lemma B.17.
If G is a semisimple Lie group and H a semisimple subgroup of G, the restric-
tions on H of the Killing form of G is nondegenerate.

Proof of proposition B.16. From the Killing form of G , one defines

Q � HK � tX P G : BpX,Hq � 0 �H P Hu.
Let H , H 1 P H and Y P Q. From ad-invariance of the Killing form, we have
BprH,Y s, H 1q � 0. Hence padpHqQq � Q and the claim is proved.

Matrices of SOp2, nq are p2�nq � p2�nq matrices while the n-dimensional
anti de Sitter space is a quotient of SOp2, n� 1q. In order to avoid confusions,
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we will reserve the letter n to the study of the group SOp2, nq and the letter l
will denote the dimension of the anti de Sitter space which will thus be AdSl.

Let us provide a matrix representation now. The matrices of sop1, nq have
to be seen as matrices of sop2, nq with the condition Y tσ � σY � 0 for the
“metric” σ � diagp0,�,�, . . . ,�q. Hence,

H � sop1, nq ;

�������� 0 0

0 0

� � � � 0 � � �� vt Ñ
���� ... Ò
0 v
... Ó�ÆÆ
 B

�ÆÆÆÆÆÆ
 (B.66)

where v P Mn�1 and B P Mn�n is skew-symmetric. Comparing this with the
general form (B.34) of a matrix of sop2, nq matrix, one immediately finds that,
with the choice

Q;

�������� 0 a�a 0

�� wt Ñ� � � 0 � � � 
����Ò ...
w 0Ó ...

�ÆÆ
 0

�ÆÆÆÆÆÆ
, (B.67)

the decomposition G � H`Q is reductive:rH,Qs � Q, rQ,Qs � H, (B.68)

and BpH,Qq � 0. In the sequel, we will use the basis of Q defined by

q0 � E12 �E21, qi � E1i �Ei1. (B.69)

We define the involutive automorphism σ � id |H` p� idq|Q. The vector space
Q can be identified with the tangent space TresAdSl, and that identification
can be extended by defining Qg � dLgQ. In this case dπ : Qg Ñ TrgsAdSl is a
vector space isomorphism. A homogeneous metric on TrgsAdSl is defined as in
subsection B.3.3.

Cartan decomposition of SOp2, l�1q are of crucial importance in chapter 1,
so that we want to use a Cartan involution θ such that rσ, θs � 0 (see [31]
page 153, theorem 2.1). One can show that X ÞÑ �Xt has that property. The
corresponding Cartan decomposition is described in appendix B.7.1.

As a consequence of relations (B.68),

dπAdphq � Adphqdπ (B.70)

because, if X P Q, dπ�1pXq � tX � Y | Y P Hu, so AdphqY P H and
AdphqX P Q.
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B.10 Iwasawa decomposition for slp2,Cq
Matrices of slp2,Cq are acting on C2 as�

α β

γ �α
�
a� bi

c� di


� �pα1a� α2b� β1c� β2dq � ipα2a� α1b� β2c� β1dqpγ1a� γ2b� α1c� α2dq � ipγ2a� γ1b� α2c� α1dq

if α � α1 � iα2. Our aim is to embed SLp2,Cq in SPp2,Rq (see sections B.11
and 2.3), so that we want a four dimensional realization of slp2,Cq. It is easy to

rewrite the previous action under the form of
�
α β

γ �α
 acting of the vertical

four component vector pa, b, c, dq. The result is that a general matrix of slp2,Cq
reads

slp2,Cq ;

������ α1 �α2

α2 α1

β1 �β2

β2 β1

γ1 �γ2

γ2 γ1

�α1 α2�α2 �α1

�ÆÆÆÆ
. (B.71)

The boxes are drawn for visual convenience. Using the Cartan involution
θpXq � �Xt, we find the following Cartan decomposition:

Kslp2,Cq ;

������ 0 �α2

α2 0

β1 �β2

β2 β1�β1 �β2

β2 �β1

0 α2�α2 0

�ÆÆÆÆ
,
Pslp2,Cq ;

������ α1 0

0 α1

β1 �β2

β2 β1�β1 �β2

β2 �β1

0 α2�α2 0

�ÆÆÆÆ
. (B.72)

We have dimPslp2,Cq � 3 and dimPslp2,Cq � 3. A maximal abelian subalgebra
of Pslp2,Cq is the one dimensional algebra generated by

A1 � ����1

1 �1 �1

�ÆÆ
.
The corresponding root spaces are
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• slp2,Cq0:

I1 � ����1

1 �1 �1

�ÆÆ
, I2 � ����0 �1

1 0

0 1�1 0

�ÆÆ

• slp2,Cq2:

D1 � ���� 1 0

0 1

0 0

0 0

�ÆÆ
, D2 � ���� 0 �1

1 0

0 0

0 0

�ÆÆ

• slp2,Cq�2

C1 � ���� 0 0

0 0

1 0

0 1

�ÆÆ
, C2 � ���� 0 0

0 0

0 �1

1 0

�ÆÆ
.
It is natural to choice slp2,Cq2 as positive root space system. In this case,
Nslp2,Cq � tD1, D2u, Aslp2,Cq � tI1u and the table of A`N isrI1, D1s � 2D1 rD1, D2s � 0 (B.73)rI1, D2s � 2D2 (B.74)

B.11 Symplectic group

B.11.1 Iwasawa decomposition

A simple computation shows that 4� 4 matrices subject to AtΩ�ΩA � 0 are
given by �

A B

C �At

where A is any 2 � 2 matrix while B and C are symmetric matrices. Looking
at general form (B.71), we see that the operation to invert the two last column
and then to invert the two last lines provides a homomorphism φ : slp2,Cq Ñ
spp2,Rq. The aim is now to build an Iwasawa decomposition of spp2,Rq which
“contains” the one of slp2,Cq.

Using the Cartan involution θpXq � �Xt, we find the Cartan decomposi-
tion

Kspp2,Rq ;

�
A S�S A



, Pspp2,Rq ;

�
S S1
S1 �S
 (B.75)
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where S and S1 are any symmetric matrices while A is a skew-symmetric one.
We have dimKspp2,Rq � 4 and dimPspp2,Rq � 6. It turns out that φpKslp2,Cqq �
Kspp2,Rq and φpPslp2,Cqq � Pspp2,Rq. A maximal abelian subalgebra of Pspp2,Rq
is spanned by the matrices A11 and A12 listed below and the corresponding root
spaces are:

• spp2,Rqp0,0q:
A11 � ����1 0

0 1 �1 0

0 �1

�ÆÆ
, A12 � ����0 1

1 0

0 �1�1 0

�ÆÆ

• spp2,Rqp0,2q:

X 1 � ����1 �1

1 �1 �1 �1

1 �1

�ÆÆ

• spp2,Rqp0,�2q:

V 1 � ���� 1 1�1 �1 �1 1�1 1

�ÆÆ

• spp2,Rqp2,0q:

W 1 � ���� 1 0

0 �1

0 0

0 0

�ÆÆ

• spp2,Rqp2,2q:

L1 � ���� 1 1

1 1

0 0

0 0

�ÆÆ

• spp2,Rqp2,�2q:

M 1 � ���� 1 �1�1 1

0 0

0 0

�ÆÆ
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• spp2,Rqp�2,0q
Y 1 � ���� 0 0

0 0

1 0

0 �1

�ÆÆ

• spp2,Rqp�2,2q:

N 1 � ���� 0 0

0 0

1 �1�1 1

�ÆÆ

• spp2,Rqp�2,�2q:

F 1 � ���� 0 0

0 0

1 1

1 1

�ÆÆ

It is important to notice how do the root spaces of slp2,Cq embed:

φpI1q � A11 φpI2q � V 1 �X 1
2

(B.76)

φpD1q � L1 �M 1
2

φpD2q � �W 1 (B.77)

φpC1q � F 1 �N 1
2

φpC2q � Y 1. (B.78)

So Nspp2,Rq must at least contain the elements L1, M 1 and W 1. We complete
the notion of positivity by V 1. The Iwasawa algebra reads

Aspp2,Rq � tB1, B2u
Nspp2,Rq � tL1,M 1,W 1, V 1u

with rL1, V 1s � �4W 1 rW 1, V 1s � �2M 1rB1
1, L

1s � 2L1 rB1
2,M

1s � 2M 1rB1
1,W

1s �W 1 rB1
2,W

1s �W 1rB1
1, V

1s � �V 1 rB1
2, V

1s � V 1
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where B1
1 � 1

2
pA11 �A12q and B2 � 1

2
pA11 �A12q. Generators of Kspp2,Rq by

K 1
t � ���� 1 0

0 1�1 0

0 �1

�ÆÆ
 K 1
1 � ���� 0 1�1 0

0 1�1 0

�ÆÆ

K 1

2 � ���� 0 1

1 0

0 �1�1 0

�ÆÆ
 K 1
3 � ���� 1 0

0 �1�1 0

0 1

�ÆÆ
.
Notice that rK 1

t,K
1
is � 0 for i � 1, 2, 3.

B.11.2 Isomorphism

The following provides an isomorphism ψ : sop2, 3q Ñ spp2,Rq:
ψpHiq � B1

i ψpuq � K 1
t

ψpW q �W 1 ψpR1q � 1

2
K 1

1

ψpMq �M 1 ψpR2q � 1

2
K 1

2

ψpLq � L1 ψpR3q � 1

2
K 1

3

ψpV q � 1

2
V 1

where the Ri’s are the generators of the sop3q part of Ksop2,3q satisfying the
relations rRi, Rjs � ǫijkRk. It is now easy to check that the image of the
embedding φ : slp2,Cq Ñ spp2,Rq is exactly sop1, 3q, so that

ψ�1 � φ : slp2,Cq Ñ H (B.79)

is an isomorphism which realises H as subalgebra of spp2,Rq. This circum-
stance will be useful in defining a spin structure on AdS4.

One can prove that the kernel of the adjoint representation of SPp2,Rq on
its Lie algebra is �1, in other words, Adpaq � id if and only if a � �1. We
define a bĳective map h : SOp2, 3q Ñ SPp2,Rq{Z2 by the requirement that

ψ
�

AdpgqX� � Ad
�
hpgq�ψpXq (B.80)

for every X P sop2, 3q. The following is true for all ψpXq:
Ad

�
hpgg1�qψpXq � ψ

�
Adpgq�Adpg1qX�	� Ad
�
hpgq�ψ�Adpg1qX�� Ad
�
hpgqhpg1q�ψpXq,
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the map h is therefore a homomorphism. If an element a P SPp2,Rq reads
a � eXAeXN eXK in the Iwasawa decomposition, the property AdpaqψpXq �
ψ
�

AdpgqX�
holds for the element g � eψ

�1XAeψ
�1XN eψ

�1XK of SOp2, 3q. This
shows that h is surjective.

B.11.3 Reductive structure on the symplectic group

A lot of structure of sop2, 3q, such as the reductive homogeneous space decom-
position as Q `H, can be immediately transported from sop2, 3q to spp2,Rq.
Indeed, let T � ψpQq and I � φ

�
slp2,Cq�. We have the direct sum decompo-

sition
spp2,Rq � T ` I.

Let X P T X I, then ψ�1X belongs to Q X H which only contains 0. The
fact that ψ is an isomorphism yields that X � 0. Since ψ preserves linear
independence, a simple dimension counting shows that the sum actually spans
the whole space.

Putting g � h�1paq in the definition (B.80) of h, we find

ψ
�
Ad

�
h�1paq�X� � AdpaqψpXq.

Considering a path aptq with ap0q � e, we differentiate this expression with
respect to t at t � 0 we find

adpdh�1 9aqX � dψ�1
�

adp 9aqψpXq� � adpdψ�1 9aqpdψ�1ψXq,
but dψ � ψ because ψ is linear, hence rdh�1 9a,Xs � rψ�1 9a,Xs for all X P
sop2, 3q and 9a P spp2,Rq. We deduce that pdh�1qe � ψ�1. We define

θsp � id |Ksp
` p� idq|Psp

σsp � id |T ` p� idq|I .
We can check that ψ�1 � θsp �ψ � θ and ψ�1 � θsp �ψ � θ. Then it is clear thatrσsp, θsps � 0

using the corresponding vanishing commutator in sop2, 3q. We denote Ta �
dLaT and the fact that dp � dπ �dh�1 � dπ �ψ�1 shows that dppTaq is a basis
of TppaqpG{Hq. So we consider the basis ti � ψpqiq of T and the corresponding
left-invariant vector fields t̃ipaq � dLati.

B.12 Some symplectic and Poisson geometry

B.12.1 Symplectic manifold

A symplectic structure on a vector space V is a skew-symmetric, nondegen-
erate bilinear 2-form Ω: V �V Ñ R. We define the symplectic group SPpΩq



B.12. SOME SYMPLECTIC AND POISSON GEOMETRY 135

as the group of linear operators A : V Ñ V such that ΩpAu,Avq � Ωpu, vq for
every u, v P V . It is easy to see that elements of SPpV q satisfy

AtΩA � Ω. (B.81)

The Lie algebra of SPpΩq is denoted by sppΩq. Taking the derivative of equation
(B.81) with respect to A, one finds the following condition for B P sppΩq:

ΩB �BtΩ � 0. (B.82)

A symplectic manifold is the data of a smooth manifold M and a sym-
plectic structure ωx on each tangent space TxM . The map x ÞÑ ωx is required
to be a smooth section of the 2-tensor bundle.

Definition B.18.
A symplectic Lie algebra is a Lie algebra s endowed with a symplectic struc-
ture ω such that �x, y, z P s,

ωprx, ys, zq � ωpry, zs, xq � ωprz, xs, yq � 0. (B.83)

B.12.2 Poisson manifold

Let M be a smooth manifold. A Poisson bracket, or a Poisson structure on
M is a map t., .u : C8pMq � C8pMq Ñ C8pMq such that

1.
�
C8pMq, t., .u� is a Lie algebra,

2. for each f P C8pMq, the map tf, .u is a derivation of the algebra C8pMq:tf, ghu � tf, guh� gtf, hu.
B.12.3 Hamiltonian action

Let pM1, ω1q and pM2, ω2q be symplectic manifolds. A symplectomorphism
from M1 to M2 is a diffeomorphism ϕ : M1 ÑM2 such that ϕ�ω2 � ω1.

For any function f P C8pMq, we define the Hamiltonian field Xf P XpMq
associated with f by

ipXf qω � df. (B.84)

Existence is assured because ω is nondegenerate. A symplectic structure in-
duces a Poisson bracket by definingtf, gu � �ωpXf , Xgq � �Xgpfq � Xf pgq. (B.85)
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In local coordinates, one can write ω � 1
2
ωijdx

i ^ dxj and Xf � ωijBifBj ,
where pωijq is the inverse matrix of pωijq. The Poisson tensor defined bytf, gu � P klBkfBlg, (B.86)

is nothing else than P � ω�1.

Theorem B.19.
If ϕ : M ÑM 1 is a diffeomorphism between two Poisson manifolds pM,P q andpM 1, P 1q, then the following are equivalent:

1. ϕ�pXf�ϕq � X 1
f ,

2. tu � ϕ, v � ϕu � tu, vu1 � ϕ,

3. ϕ�P � P 1,
If moreover the Poisson structures P and P 1 come from symplectic forms ω
and ω1,

4. ϕ�ω1 � ω.

Now, we consider a symplectic action τ : G�M ÑM of a Lie group G on
M (i.e. τg : M ÑM is a symplectic transformation of M for each g P G). The
action is Hamiltonian if, for every X P G, there exists a map λX P C8pM,Cq
such that

ipX�qω � dλX , (B.87a)tλX , λY u � λrX,Y s. (B.87b)

Definition B.20.
The map λ : G Ñ C8pMq which satisfies (B.87) is the dual momentum map
while the momentum map is J : M Ñ G� defined by

λXpxq � xJpxq, Xy (B.88)

for all X P G.

B.12.4 Coadjoint orbits

Let G be a Lie group and G its Lie algebra. We know that G acts on the dual
G� by

g � ξ � ξ �Adpg�1q � Adpgq�ξ (B.89)

for g P G and ξ P G�. The second equality defines the coadjoint action
Ad� : G� G� Ñ G�. In other words, for all X P G,pg � ξqpXq � xξ,Adpg�1qXy � xAdpgq�pξq, Xy.
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In this context, the notion of fundamental fields is given bu X�
ξ � ξ � adpXq.

Let θξ � tg � ξ|g P Gu, the orbit of ξ in G�. It can be shown that

ω̃xpX�
x , Y

�
x q � xx, rX,Y sy (B.90)

defines a symplectic form on θξ, the coadjoint orbit of ξ.

Proposition B.21.
The coadjoint action is Hamiltonian.

B.12.5 Central extension

Let G be a Lie algebra. A Chevalley coboundary is a 2-form which reads δξ
for a certain ξ P G� with δ defined bypδξqpA,Bq � �ξprA,Bsq. (B.91)

Let Ω be a 2-cocycle. If it is not a coboundary, we add an element C in G and
we consider G1 � G `RC with the Lie algebra structurerA� s,B � tsG1 � rA,BsG � ΩpA,BqC. (B.92)

This is the central extension of G with respect to the 2-cocycle Ω. The
terminology comes from the fact that the extension RC belongs to the center
of G1. The point is that Ω is a coboundary in G1 becausepδC�qpA,Bq � C�rA,BsG1 � C��rA,BsG � ΩpA,BqC� � ΩpA,Bq, (B.93)

so that Ω � δC�.
Now we suppose that the group G acts on a manifold M . We define the

action of the extended group G1 � GbeRC by saying that the “new” part does
not act: pg, sq � x � g � x. Fundamental fields remains unchanged:pX, sq� � X�. (B.94)

If the action of G on M is weakly Hamiltonian, we have functions µx : M Ñ C
such that ipX�qω � dµX . These functions fulfil X� � tµX , .u. We define

λX,s � µX � s. (B.95)

Proposition B.22.
The action of G1 is (strongly) Hamiltonian for these functions.

Proof. From equation (B.94), we have tµX , .u � tµX,s, .u hencetλpX,sq, λpY,tqu � tµX , µY u � µrX,Y s � CX,Y (B.96)



for certain constants CXY which satisfy the property d
�tµX , µY u�µrX,Y s� � 0.

Therefore tλpX,sq, λpY,tqu � λrX,Y s,CX,Y � λrpX,sq,pY,tqs. (B.97)

The sense of the whole construction is the following. When the action G is
weakly Hamiltonian on M , we have functions µX which define Ω bytµX , µY u � µrX,Y s � ΩpX,Y q.
In this case, the corresponding group extension has a strongly Hamiltonian
action with momentum maps given by (B.95).



Conclusion

In a first time we defined a black hole in anti de Sitter space. This construction
is not related to any metric divergence but is a dimensional generalization of a
causal black hole whose singularity is dictated by causal issues. The originality
of our approach lies in the fact that our method uses essentially group theoret-
ical and symmetric spaces techniques. That result should be generalisable to
any semisimple symmetric space.

Then we proved that the physical domain of the black hole (the non singular
part) is equivalent to a group in the sense that there exists a group which acts
freely and transitively by diffeomorphisms. So we identify the group with the
manifold and it is easy to prove that the latter group is a split extension of an
Heisenberg group which happens to be quantizable by a twisted pull-back of a
previously known quantization of SUp1, nq.

We also proved two somewhat out of subject small results. The first one is
the fact that a deformation of the half-plane by Unterberger can be transported
to a deformation of the Iwasawa subgroup of SLp2,Rq which can in turn deform
(by the group action method) the dual of its Lie algebra. We showed however
that that deformation is not universal; indeed we pointed out two different
actions of the Iwasawa subgroup of SLp2,Rq on AdS2 for which the deformation
by group action method reveals to be unable to even multiply two compactly
supported functions. An interesting question is to know the precise point in
the construction of Unterberger which makes his product non universal.

The second small result is a proof of concept for quantization of the Iwasawa
subgroup of SOp2, nq by the method of the extension lemma. We wrote SOp2, nq
as a symplectic split extension of SUp1, nq by SUp1, 1q. The extension lemma
then provided a kernel on SOp2, nq because kernels were known on SUp1, 1q
and SUp1, nq. Is that quantization equivalent in some sense to the one that we
performed in the main line of the black hole deformation ? That question still
has to be solved.

As a final remark, I want to point out that the major challenge of this
century is not quantization, but global warming.
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