phystricks
Public Member Functions | Public Attributes | Private Attributes | List of all members
phystricks.src.GenericCurve.GenericCurve Class Reference
Inheritance diagram for phystricks.src.GenericCurve.GenericCurve:
Inheritance graph
[legend]
Collaboration diagram for phystricks.src.GenericCurve.GenericCurve:
Collaboration graph
[legend]

Public Member Functions

def __init__ (self, pI, pF)
 
def addPlotPoint (self, x)
 
def getFunctionIntegral (self, fun, lmin=None, lmax=None)
 
def total_curvature (self)
 
def getNextRegularFunctionParameters (self, lmin, lmax, fun, df, xunit=1, yunit=1)
 
def getRegularFunctionParameters (self, lmin, lmax, fun, df, initial_point=False, final_point=False, xunit=1, yunit=1, numerical=True)
 
def getRegularLengthParameters (self, mll, Mll, dl, initial_point=False, final_point=False, xunit=1, yunit=1, numerical=True)
 
def getRegularCurvatureParameter (self, mll, Mll, dl, initial_point=False, final_point=False, xunit=1, yunit=1)
 
def representativeParameters (self)
 
def representative_points (self)
 
def get_minmax_data (self, start=None, end=None)
 
def xmax (self, deb, fin)
 
def xmin (self, deb, fin)
 
def ymax (self, deb, fin)
 
def ymin (self, deb, fin)
 

Public Attributes

 linear_plotpoints
 
 curvature_plotpoints
 
 added_plotpoints
 
 pI
 
 pF
 

Private Attributes

 _representativeParameters
 
 _representative_points
 

Constructor & Destructor Documentation

def phystricks.src.GenericCurve.GenericCurve.__init__ (   self,
  pI,
  pF 
)
`pI` and `pF` are initial and final value of the parameters. 
This is to abstract the notational problem between
(mx,Mx) in the phyFunction and (llamI,llamF) in ParametricCurve.

Member Function Documentation

def phystricks.src.GenericCurve.GenericCurve.addPlotPoint (   self,
  x 
)
def phystricks.src.GenericCurve.GenericCurve.get_minmax_data (   self,
  start = None,
  end = None 
)
return the min and max of x and y for the graph of `self`
and the parameter between `start` and `end`

INPUT:

- ``start,end`` - interval on which we are considering the function.

OUTPUT:

A dictionary
def phystricks.src.GenericCurve.GenericCurve.getFunctionIntegral (   self,
  fun,
  lmin = None,
  lmax = None 
)
Return the integral of 'fun' from 'lmin' to 'lmax'.
def phystricks.src.GenericCurve.GenericCurve.getNextRegularFunctionParameters (   self,
  lmin,
  lmax,
  fun,
  df,
  xunit = 1,
  yunit = 1 
)
Return a value 'nl' of the parameter such that the integral of 'fun' from 'lmin' to 'nl' is 'df'.

`lmax` - is the maximal value of the parameter. If the interval [lmin,lmax]  reveals to be too small, return 'None'
def phystricks.src.GenericCurve.GenericCurve.getRegularCurvatureParameter (   self,
  mll,
  Mll,
  dl,
  initial_point = False,
  final_point = False,
  xunit = 1,
  yunit = 1 
)
Same thing as `getRegularLengthParameters`, but with the curvature instead of the arc length.
def phystricks.src.GenericCurve.GenericCurve.getRegularFunctionParameters (   self,
  lmin,
  lmax,
  fun,
  df,
  initial_point = False,
  final_point = False,
  xunit = 1,
  yunit = 1,
  numerical = True 
)
`fun` - is a function on the curve, expressed by the parameter.

We return a list of points  x_i on the curve such that the integral of 'fun' from x_i to x_{i+1} is df.

This is a visual function in the sense that the curve is first transformed in order to take the dilatation into account.

EXAMPLE :

Taking as 'fun' the norm of the tangent vector, one consider the arc length
def phystricks.src.GenericCurve.GenericCurve.getRegularLengthParameters (   self,
  mll,
  Mll,
  dl,
  initial_point = False,
  final_point = False,
  xunit = 1,
  yunit = 1,
  numerical = True 
)
return a list of values of the parameter such that the corresponding points are equally spaced by dl.
Here, we compute the distance using the method arc_length.

INPUT:

- ``mll,Mll`` - the initial and final values of the parameters.

- ``dl`` - the arc length distance between the points corresponding
    to the returned values.

- ``initial_point`` - (default=False) it True, return also the initial parameters (i.e. mll).

- ``final_point`` - (default=False) it True, return also the final parameter (i.e. Mll)
def phystricks.src.GenericCurve.GenericCurve.representative_points (   self)
def phystricks.src.GenericCurve.GenericCurve.representativeParameters (   self)
def phystricks.src.GenericCurve.GenericCurve.total_curvature (   self)
def phystricks.src.GenericCurve.GenericCurve.xmax (   self,
  deb,
  fin 
)
def phystricks.src.GenericCurve.GenericCurve.xmin (   self,
  deb,
  fin 
)
def phystricks.src.GenericCurve.GenericCurve.ymax (   self,
  deb,
  fin 
)
def phystricks.src.GenericCurve.GenericCurve.ymin (   self,
  deb,
  fin 
)

Member Data Documentation

phystricks.src.GenericCurve.GenericCurve._representative_points
private
phystricks.src.GenericCurve.GenericCurve._representativeParameters
private
phystricks.src.GenericCurve.GenericCurve.added_plotpoints
phystricks.src.GenericCurve.GenericCurve.curvature_plotpoints
phystricks.src.GenericCurve.GenericCurve.linear_plotpoints
phystricks.src.GenericCurve.GenericCurve.pF
phystricks.src.GenericCurve.GenericCurve.pI

The documentation for this class was generated from the following file: