phystricks
|
Public Member Functions | |
def | __init__ (self, center, radius, angleI=0, angleF=360, visual=False, pspict=None) |
def | equation (self, numerical=False) |
def | parametric_curve (self, a=None, b=None) |
def | put_arrow (self, arg, pw) |
def | getPoint (self, theta, advised=True, numerical=False) |
def | get_point (self, theta, advised=True, numerical=False) |
def | get_regular_points (self, mx, Mx, l=None, n=None, advised=True) |
def | get_tangent_vector (self, theta) |
def | get_tangent_segment (self, theta) |
def | get_normal_vector (self, theta) |
def | xmax (self, angleI, angleF) |
def | xmin (self, angleI, angleF) |
def | ymax (self, angleI, angleF) |
def | ymin (self, angleI, angleF) |
def | graph (self, angleI, angleF) |
def | __str__ (self) |
def | copy (self) |
def | representative_points (self) |
def | action_on_pspict (self, pspict) |
Public Member Functions inherited from phystricks.src.GenericCurve.GenericCurve | |
def | __init__ (self, pI, pF) |
def | addPlotPoint (self, x) |
def | getFunctionIntegral (self, fun, lmin=None, lmax=None) |
def | total_curvature (self) |
def | getNextRegularFunctionParameters (self, lmin, lmax, fun, df, xunit=1, yunit=1) |
def | getRegularFunctionParameters (self, lmin, lmax, fun, df, initial_point=False, final_point=False, xunit=1, yunit=1, numerical=True) |
def | getRegularLengthParameters (self, mll, Mll, dl, initial_point=False, final_point=False, xunit=1, yunit=1, numerical=True) |
def | getRegularCurvatureParameter (self, mll, Mll, dl, initial_point=False, final_point=False, xunit=1, yunit=1) |
def | representativeParameters (self) |
def | representative_points (self) |
def | get_minmax_data (self, start=None, end=None) |
def | xmax (self, deb, fin) |
def | xmin (self, deb, fin) |
def | ymax (self, deb, fin) |
def | ymin (self, deb, fin) |
Public Member Functions inherited from phystricks.src.ObjectGraph.ObjectGraph | |
def | __init__ (self, obj) |
def | draw_edges (self) |
def | wave (self, dx, dy) |
def | get_arrow (self, llam) |
def | get_mark (self, dist, angle=None, text=None, mark_point=None, added_angle=None, position=None, pspict=None) |
def | put_mark (self, dist=None, angle=None, text="", mark_point=None, added_angle=None, position=None, pspict=None, pspicts=None) |
put a mark on an object More... | |
def | add_option (self, opt) |
def | get_option (opt) |
def | remove_option (opt) |
def | merge_options (self, graph) |
def | conclude_params (self) |
def | params (self, language, refute=[]) |
def | bracketAttributesText (self, language, refute=[]) |
def | action_on_pspict (self, pspict) |
def | conclude (self, pspict) |
def | bounding_box (self, pspict=None) |
def | math_bounding_box (self, pspict) |
def | latex_code (self, pspict, language=None) |
Public Attributes | |
linear_plotpoints | |
center | |
radius | |
diameter | |
angleI | |
angleF | |
visual | |
pspict | |
Public Attributes inherited from phystricks.src.GenericCurve.GenericCurve | |
linear_plotpoints | |
curvature_plotpoints | |
added_plotpoints | |
pI | |
pF | |
Public Attributes inherited from phystricks.src.ObjectGraph.ObjectGraph | |
obj | |
parameters | |
wavy | |
waviness | |
options | |
draw_bounding_box | |
already_computed_BB | |
already_computed_math_BB | |
record_add_to_bb | |
separator_name | |
in_math_bounding_box | |
in_bounding_box | |
added_objects | |
take_BB | |
take_math_BB | |
mark | |
marque | |
Private Member Functions | |
def | _math_bounding_box (self, pspict=None) |
def | _bounding_box (self, pspict=None) |
Private Attributes | |
_parametric_curve | |
_equation | |
_numerical_equation | |
This is a circle, or an arc of circle. INPUT: - ``center`` - a point, the center of the circle. - ``radius`` - a number, the radius of the circle. - ``self.angleI`` - (default=0) the beginning angle of the arc (degree). - ``self.angleF`` - (default=360) the ending angle of the arc (degree). - ``visual`` - (default=False) if 'True', the radius is taken as a 'visual' length. OUTPUT: A circle ready to be drawn. EXAMPLES:: sage: from phystricks import * sage: circle=Circle(Point(-1,1),3) If you want the same circle but between the angles 45 and 78:: sage: other_circle=circle.graph(45,78)
def phystricks.src.CircleGraph.CircleGraph.__init__ | ( | self, | |
center, | |||
radius, | |||
angleI = 0 , |
|||
angleF = 360 , |
|||
visual = False , |
|||
pspict = None |
|||
) |
def phystricks.src.CircleGraph.CircleGraph.__str__ | ( | self | ) |
|
private |
|
private |
def phystricks.src.CircleGraph.CircleGraph.action_on_pspict | ( | self, | |
pspict | |||
) |
def phystricks.src.CircleGraph.CircleGraph.copy | ( | self | ) |
Return a copy of the object as geometrical object. It only copies the center and the radius. In particular the following are not copied: - style of drawing. - initial and final angle if `self` is an arc. EXAMPLES: Python copies by assignation:: sage: from phystricks import * sage: c1=Circle( Point(1,1),2 ) sage: c2=c1 sage: c2.center=Point(3,3) sage: print c1.center <Point(3,3)> The method :func:`copy` pass through:: sage: c1=Circle( Point(1,1),3 ) sage: c2=c1.copy() sage: c2.center=Point(3,3) sage: print c1.center <Point(1,1)> NOTE: Due to use of `lazy_attribute`, it is not recommended to change the center of a circle after having defined it.
def phystricks.src.CircleGraph.CircleGraph.equation | ( | self, | |
numerical = False |
|||
) |
Return the equation of `self`. OUTPUT: an equation. EXAMPLES:: sage: from phystricks import * sage: circle=Circle(Point(0,0),1) sage: circle.equation() x^2 + y^2 - 1 == 0 :: sage: circle=CircleOA(Point(-1,-1),Point(0,0)) sage: circle.equation() (x + 1)^2 + (y + 1)^2 - 2 == 0 If 'numerical' is True, return numerical approximations of the coefficients.
def phystricks.src.CircleGraph.CircleGraph.get_normal_vector | ( | self, | |
theta | |||
) |
Return a normal vector at the given angle INPUT: - ``theta`` - an angle in degree or :class:`AngleMeasure`. OUTPUT: An affine vector EXAMPLES:: sage: from phystricks import * sage: C=Circle(Point(0,0),2) sage: print C.get_normal_vector(45) <vector I=<Point(sqrt(2),sqrt(2))> F=<Point(3/2*sqrt(2),3/2*sqrt(2))>>
def phystricks.src.CircleGraph.CircleGraph.get_point | ( | self, | |
theta, | |||
advised = True , |
|||
numerical = False |
|||
) |
def phystricks.src.CircleGraph.CircleGraph.get_regular_points | ( | self, | |
mx, | |||
Mx, | |||
l = None , |
|||
n = None , |
|||
advised = True |
|||
) |
return regularly spaced points on the circle INPUT: - ``mx`` - initial angle (degree). - ``Mx`` - final angle (degree). - ``l`` - distance between two points (arc length). - ``n`` - number of points - ``advised`` - (default=True) if True, compute an advised mark angle for each point this is CPU-intensive. OUTPUT: a list of points EXAMPLES:: sage: from phystricks import * sage: C=Circle(Point(0,0),2) sage: pts=C.get_regular_points(0,90,1) sage: len(pts) 4 The points in the previous examples are approximatively : ['<Point(2,0)>', '<Point(2*cos(1/2),2*sin(1/2))>', '<Point(2*cos(1),2*sin(1))>', '<Point(2*cos(3/2),2*sin(3/2))>']
def phystricks.src.CircleGraph.CircleGraph.get_tangent_segment | ( | self, | |
theta | |||
) |
Return a tangent segment at point (x,f(x)). The difference with self.get_tangent_vector is that self.get_tangent_segment returns a segment that will be symmetric. The point (x,f(x)) is the center of self.get_tangent_segment.
def phystricks.src.CircleGraph.CircleGraph.get_tangent_vector | ( | self, | |
theta | |||
) |
def phystricks.src.CircleGraph.CircleGraph.getPoint | ( | self, | |
theta, | |||
advised = True , |
|||
numerical = False |
|||
) |
Return a point at angle <theta> (degree) on the circle. INPUT: - ``theta`` - the angle given in degree.
def phystricks.src.CircleGraph.CircleGraph.graph | ( | self, | |
angleI, | |||
angleF | |||
) |
Return a graph of the circle between the two angles given in degree
def phystricks.src.CircleGraph.CircleGraph.parametric_curve | ( | self, | |
a = None , |
|||
b = None |
|||
) |
Return the parametric curve associated to the circle. If optional arguments <a> and <b> are given, return the corresponding graph between the values a and b of the angle. The parameter of the curve is the angle in radian.
def phystricks.src.CircleGraph.CircleGraph.put_arrow | ( | self, | |
arg, | |||
pw | |||
) |
def phystricks.src.CircleGraph.CircleGraph.representative_points | ( | self | ) |
def phystricks.src.CircleGraph.CircleGraph.xmax | ( | self, | |
angleI, | |||
angleF | |||
) |
def phystricks.src.CircleGraph.CircleGraph.xmin | ( | self, | |
angleI, | |||
angleF | |||
) |
def phystricks.src.CircleGraph.CircleGraph.ymax | ( | self, | |
angleI, | |||
angleF | |||
) |
def phystricks.src.CircleGraph.CircleGraph.ymin | ( | self, | |
angleI, | |||
angleF | |||
) |
|
private |
|
private |
|
private |
phystricks.src.CircleGraph.CircleGraph.angleF |
phystricks.src.CircleGraph.CircleGraph.angleI |
phystricks.src.CircleGraph.CircleGraph.center |
phystricks.src.CircleGraph.CircleGraph.diameter |
phystricks.src.CircleGraph.CircleGraph.linear_plotpoints |
phystricks.src.CircleGraph.CircleGraph.pspict |
phystricks.src.CircleGraph.CircleGraph.radius |
phystricks.src.CircleGraph.CircleGraph.visual |